

নিউটনীয় বলবিদ্যা NEWTONIAN MECHANICS

আগের অধ্যায়ে আমরা বস্তুর গতি নিয়ে আলোচনা করেছি। কিছু কোনো বস্তু আপনা আপনি গতিশীল হতে পারে না। বস্তু গতিশীল হতে হলে বা বস্তুর গতির পরিবর্তন করতে হলে বস্তুর ওপর একটা কিছু প্রয়োগ করতে হয়। এ একটা কিছু ২চ্ছে বল। এ বল নিয়ে আলোচনা করা হয় বিজ্ঞালের যে শাখায় তাকে বলা হয় বলবিজ্ঞান বা বলবিদ্যা। আইনস্টাইনের আপেক্ষিক তত্ত্ব আনিছারের পূর্বে বিজ্ঞানীরা ধরে নিতেন ভর, স্থান ও সময় ধ্রুব, পর্যবেক্ষকের গতি বা স্থিতির ওপর সেগুলো নির্ভরশীল নয়। এ ধারণার ওপর ভিত্তি করে যে বলবিদ্যা গড়ে উঠেছে, যাতে গ্যালিলিও, নিউটন, হ্যামিলটন প্রমুখের অবদান বিশেষভাবে প্রণিধানযোগ্য তাকে বলা হয় নিউটনীয় বলবিদ্যা। বস্তু বা পর্যবেক্ষকের বেগ কম হলে নিউটনীয় বলবিদ্যার সূত্র ও সমীকরণগুলো খাটে। অপরপক্ষে বস্তু বা পর্যবেক্ষকের বেগ আলোর বেগের সাথে তুলনীয় হলে আপেক্ষিক তত্ত্বীয় বলবিদ্যা প্রযোজ্য হয়। এ অধ্যায়ে আমরা গতি সংক্রান্ত নিউটনের সূত্রসমূহ এবং তাদের প্রয়োগ এবং ঘূর্ণনগতির ক্ষেত্রে সংশ্লিষ্ট রাশিগুলো আলোচনা করবো।

প্রধান শক্সমূহ:

বল, নিউটনের গতিসূত্র,
ভরবেগের সংরক্ষণ সূত্র,
জড়তার ভ্রামক, চক্রগতির
ব্যাসার্ধ, কৌণিক ভরবেগ,
কৌণিক ভরবেগের
সংরক্ষণ সূত্র, টর্ক,
কেন্দ্রমুখী বল, কেন্দ্রবিমুখী
বল, ঘাতবল, বলের ঘাত,
সংঘর্ষ, স্থিতিস্থাপক সংঘর্ষ,
অন্থিতিস্থাপক সংঘর্ষ,

এ অধ্যায় পাঠ শেষে শিক্ষার্থীরা---

ক্রমিক নং	ং শিখন ফল					
2	বলের স্বজ্ঞামূলক ধারণা ব্যাখ্যা করতে পারবে।	8.3				
ર	ক্যালকুলাস ব্যবহার করে নিউটনের দ্বিতীয় সূত্র বিশ্লেষণ করতে পারবে।	9.8				
9	নিউটনের গতি সূত্রগুলার মধ্যে পারস্পরিক সম্পর্ক ব্যাখ্যা করতে পারবে।	8.8				
8.	নিউটনের গতি সূত্রের ব্যবহার করতে পারবে।	8.6				
ď	নিউটনের গতি সূত্রের সীমাবদ্ধতা ব্যাখ্যা করতে পারবে।	8.50				
৬	বল, ক্ষেত্র ও প্রাবল্যের ধারণা ব্যাখ্যা করতে পারবে।	8.55				
٩	রৈখিক ভরবেগের নিত্যতার সূত্র ব্যাখ্যা <mark>করতে পারবে</mark> ।	8.9				
Ъ	সকল অবস্থায় ভরবেগের সং <mark>রক্ষণশীলতা যাচাই করতে পারবে।</mark>	8.9, 8.5				
8	নিউটনের তৃতীয় সূত্রের <mark>সাথে ভর</mark> বেগের নিত্যতার সম্পর্ক বি <mark>শ্লেষণ করতে পা</mark> রবে।					
30	জড়তার ভ্রামক ও <mark>কৌণিক</mark> ভরবেগ ব্যাখ্যা করতে পারবে।					
22	কৌণিক ভরবেগ <mark> সংক্র</mark> ান্ত রাশিমালা ব্যাখ্যা করতে পারবে।	8.50				
25	টর্ক ব্যাখ্যা কর <mark>তে পা</mark> রবে ।	8.১৬				
20	টর্ক, জড়তার <mark>স্রামক</mark> ও কৌণিক ত্বরণের মধ্যে সম্পর্ক বিশ্লেষণ করতে পার <mark>বে।</mark>	8.5%				
78	ব্যবহারিক * একটি ফ্লাই হু <mark>ইলের জ</mark> ড়তার ভ্রামক নির্ণয় করতে পারবে।	8.56				
36	সার্বজনীন সূত্র হিসে <mark>বে কৌণি</mark> ক ভরবেগের নিত্যতা ব্যাখ্যা করতে <mark>পারবে ।</mark>	8.২0				
১৬	কেন্দ্রমুখী এবং কেন্দ্রবি <mark>মুখী বলের</mark> ব্যবহার করতে পারবে।	8.23				
29	রাস্তার বাঁকে ঢাল দেওয়া <mark>র প্রয়োজনীয়তা ব্যাখ্যা করতে পারবে</mark> ।	8.২২				
2p.	স্থিতিস্থাপক ও অস্থিতিস্থাপক সংঘর্ষ ব্যাখ্যা করতে পারবে।	8.২৩				
১৯	দুটি বস্তুর মধ্যে একমাত্রিক স্থিতিস্থাপক সংঘর্ষের সমস্যার সমাধান করতে পারবে।	8.২৩				

8.১। বলের স্বজ্ঞামূলক ধারণা

Intuitive Concept of Force

আমরা জানি প্রত্যেক বস্তু যে অবস্থায় আছে সেই অবস্থা বজায় রাখতে চায় অর্থাৎ বস্তু স্থির থাকলে স্থির থাকতে চায় আর গতিশীল থাকলে গতিশীল থাকতে চায়। বস্তুর এ ধর্মকে জড়তা বলে। বস্তুর এ অবস্থার পরিবর্তন ঘটাতে হলে বাইরে থেকে একটা কিছু প্রয়োগ করতে হয়।

করে দেখো: টেবিলের ওপর একটি বই রাখো। বইটির দিকে কিছুক্ষণ চেয়ে থাকো। বইটির অবস্থানের কোনো পরিবর্তন হচ্ছে না। বইটি তোমার সাপেক্ষে স্থির। এবার তুমি হাত দিয়ে বইটিকে ঠেলো বা টানো। কী দেখছো? বইটি তার অবস্থানের পরিবর্তন করছে অর্থাৎ বইটি গতিশীল হচ্ছে। তুমি যখন বস্তুটিকে ঠেলো বা টানো তখন তুমি বস্তুটির উপর কিছু একটা প্রয়োগ কর। সাধারণ ভাষায় বলতে গেলে এই ঠেলা (Push) এবং টানাই (Pull) হচ্ছে বল। তোমার হাত ও বস্তুর প্রত্যক্ষ সংস্পর্শের ফলশ্রুতি হচ্ছে বল।

কোনো বস্তুর ওপর প্রযুক্ত বল হচ্ছে ঐ বস্তু এবং অন্য কোনো বস্তুর পারম্পরিক ক্রিয়ার ফল। কোনো বস্তুর পরিপার্শ্ব যা অন্যান্য বস্তুর সমন্বয়ে গঠিত, ঐ বস্তুর ওপর বল প্রয়োগ করে যেমন, তুমি যদি কোনো বইকে হাত দিয়ে ধরে রাখ, তাহলে বইয়ের পরিবেশের গুরুত্বপূর্ণ বস্তুগুলো হচ্ছে তোমার হাত, যা বইটির ওপর উর্ধ্বমুখী বল প্রয়োগ করে; এবং পৃথিবী যা বইটির ওপর নিম্মুখী বল প্রয়োগ করে (বই-এর ওজন)।

আমাদের সাধারণ অভিজ্ঞতা বলে কোনো কিছু ঠেলতে বা টানতে, বহন করতে বা নিক্ষেপ করতে বলের প্রয়োজন হয়। আমরা আমাদের নিজের উপরও বলের প্রভাব অনুভব করতে পারি যখন কেউ আমাদেরকে ধাক্কা দেয় বা কোনো গতিশীল বস্তু আমাদেরকে আঘাত করে অথবা মেলার মাঠে যখন আমরা কোনো নাগরদোলায় চড়ে বসি। এসবই হচ্ছে বলের স্বজ্ঞামূলক ধারণা।

বলের স্বজ্ঞামূলক ধারণা থেকে প্রকৃত বৈজ্ঞানিক ধারণায় উপনীত হওয়া কিন্তু খুব সহজে হয়ন। অ্যারিস্টটলের মতো প্রাচীন বিজ্ঞ চিন্তাবিদদেরও বল সম্পর্কে অনেক ভ্রান্ত ধারণা ছিল। বল সংক্রান্ত প্রথম বৈজ্ঞানিক ধারণার অবতারণা করেন গ্যালিলিও। স্যার আইজ্যাক নিউটনের গতি বিষয়ক সূত্রাবলি থেকেই বল সংক্রান্ত সঠিক বৈজ্ঞানিক ধারণা পাওয়া যায়। মহাকর্ষ বলের সূত্রের সাহায্যে তিনি বল সম্পর্কে একটি পরিপূর্ণ বৈজ্ঞানিক ধারণা দেন।

স্থূল জগতে আমরা মহাকর্ষ বল ছাড়াও আরো নানা রকম বলের সাথে পরিচিত হই, যেমন পেশি শক্তি, দুটি বস্তুর মধ্যকার স্পর্শ বল যেমন ঘর্ষণ বল, সঙ্কুচিত বা প্রসারিত স্প্রিং কর্তৃক প্রযুক্ত বল, টানা তার বা সূতার উপর বল, কঠিন বস্তু যখন প্রবাহীর সংস্পর্শে থাকে তখন প্রবতা বা সান্দ্র বল, প্রবাহীর চাপের কারণে বল বা তরলের পৃষ্ঠটানজনিত বল ইত্যাদি। দুটি বস্তু পরস্পরের সংস্পর্শে না থাকলেও বল ক্রিয়াশীল হতে পারে, যেমন মহাকর্ষ বল, বা দুটি আহিত বস্তুর মধ্যকার বল। সৃক্ষ জগতে আমরা প্রোটন ও নিউট্রনের মধ্যে নিউক্লিয় বল, আন্তঃপারমাণবিক বা আন্তঃআণবিক বলের কথাও আমরা জানি।

বলের সংজ্ঞা: যা স্থির বস্তুর ওপ<mark>র ক্রিয়া</mark> করে তাকে গতিশীল করে বা করতে <mark>চায় বা যা গতিশীল বস্তুর ওপর</mark> ক্রিয়া করে তার গতির পরিবর্তন করে বা <mark>করতে চায় তা</mark>কে বল বলে। বলের বৈশিষ্ট্য

সাধারণ অভিজ্ঞতার আলোকে বলের নিম্নোক্ত চারটি বৈশিষ্ট্য উল্লেখ করা যায়।

১. বলের দিক আছে।

যেহেতু টানা বা ঠেলার মান ও দিক উভয়ই আছে, তাই বল একটি ভেক্টর রাশি। বলের দিক টানা বা ঠেলার দিকে।

২. বল জোড়ায় জোড়ায় ক্রিয়া করে।

যদি A বস্তু B বস্তুর ওপর একটি বল প্রয়োগ করে, তাহলে B বস্তুও A বস্তুর ওপর একটি বল প্রয়োগ করে।

যখন কোনো ক্রিকেট ব্যাট দিয়ে ক্রিকেট বলকে আঘাত করা হয়, তখন ব্যাটটি ক্রিকেট বলের ওপর একটি বল প্রয়োগ করে। ক্রিকেট বলটিও কিন্তু ব্যাটের ওপর একটি বল প্রয়োগ করে।

৩. কোনো বল একটি বস্তুতে ত্বরণ সৃষ্টি করতে পারে।

যখন তুমি ফুটবলকে কিক্ কর, তখন তোমার পা ফুটবলটির সংস্পর্শে থাকা অবস্থায় তার উপর বল প্রয়োগ করে তার বেগের পরিবর্তন ঘটায়।

৪. বল কোনো বস্তুকে বিকৃত করতে পারে।

আমরা যখন কোনো রাবারের টুকরা বা শ্রিং-এর দুই প্রান্ত ধরে টান দেই অর্থাৎ বল প্রয়োগ করি, তখন তা বিকৃত হয়।

8.২। মৌলিক বল

Fundamental Force

বিংশ শতাব্দীর পদার্থবিজ্ঞানের গুরুত্বপূর্ণ অন্তর্জ্ঞান বা উপলব্ধি হচ্ছে যে ইতোপূর্বে আমরা যে সকল বলের উল্লেখ করেছি এবং আরো অনুল্লেখিত যে অসংখ্য বল রয়েছে সেগুলো কোনোটিই কিন্তু স্বাধীন বা মৌলিক নয়। এগুলোর উদ্ভব প্রকৃতির চারটি মৌলিক বল এবং তাদের মধ্যকার ক্রিয়া প্রতিক্রিয়া বা মিথক্রিয়া বা অন্তক্রিয়া (Interaction) থেকে।

যে সকল বল মূল বা স্বাধীন অর্থাৎ যে সকল বল অন্য কোনো বল থেকে উৎপন্ন হয় না বা অন্য কোনো বলের কোনো রূপ নয় বরং অন্যান্য বল এই সকল বলের কোনো না কোনো রূপের প্রকাশ তালেরকে মৌলিক বল বলে।

এ মৌলিক বলগুলো হলো:

- ১. মহাকর্ষ বল (Gravitational force),
- ২. তাড়িতটৌম্বক বল (Electromagnetic force),
- ৩. সবল নিউক্লিয় বল (Strong Nuclear force) এবং
- 8. দুর্বল নিউক্লিয় বল (Weak Nuclear force)
- 5. মহাকর্ষ বল: ভরের কারণে মহাবিশ্বের যেকোনো দুটি বস্তুর মধ্যকার পারস্পরিক আকর্ষণ বলকে মহাকর্ষ বলে। কোনো বস্তুর ওজন হচ্ছে মহাকর্ষ বলের ফলশ্রুতি। যদিও স্থুল বস্তুগুলোর মধ্যকার মহাকর্ষ বল খুবই তাৎপর্যপূর্ণ হতে পারে, কিন্তু চারটি মৌলিক বলের মধ্যে মহাকর্ষ বল হচ্ছে দুর্বলতম বল। অবশ্য এ কথাটি প্রযোজ্য হয় মৌলিক কণাগুলোর পারস্পরিক বল বিবেচনা করে তাদের আপেক্ষিক সবলতার বিচারে। যেমন, কোনো হাইড্রোজেন প্রমাণুতে ইলেক্ট্রন ও প্রোটনের মধ্যকার মহাকর্ষ বল হচ্ছে $3.6 \times 10^{-47} \, \mathrm{N}$; অপরপক্ষে এই কণা দুটির মধ্যকার স্থির তড়িৎ বল হচ্ছে $8.2 \times 10^{-8} \, \mathrm{N}$ । এখানে আমরা দেখি যে, স্থির তড়িৎ বলের তুলনায় মহাকর্ষ বল তাৎপর্যপূর্ণ নয়।

মহাকর্ষ একটি সার্বজনীন ব<mark>ল। এ</mark> মহাবিশ্বের প্রত্যেক বস্তুই অন্য বস্তুর কারণে এ বল <mark>অনুভ</mark>ব করে। এ বলের পাল্লা হচ্ছে অসীম। ভূ-পৃষ্ঠের সকল বস্তুই পৃ<mark>থিবীর</mark> কারণে এ বল অনুভব করে। মহাকর্ষ বল সুনির্দিষ্টভাবে পৃথিবীর চারদিকে চাঁদের বা বিভিন্ন কৃত্রিম উপগ্রহের ঘূর্ণন, সূর্যের চারদিকে পৃথিবীর বা বিভিন্ন গ্রহের গতিকে নিয়ন্ত্রণ করে থাকে। নক্ষত্র, গ্যালাপ্তির বা নক্ষত্রপূপ্ত গঠনেও মহাকর্ষ বল গুরুত্বপূর্ণ ভূমিকা রাখে। বিজ্ঞানীরা ধারণা করেন যে বস্তুদ্বয়ের মধ্যে গ্রাভিটন নামে এক প্রকার কণার পারম্পরিক বিনিময়ের দ্বারা এই বল ক্রিয়াশীল হয়। অবশ্য গ্রাভিটনের অস্তিত্বের কোনো প্রমাণ এখনো পাওয়া যায়নি।

২. তাড়িতটৌম্বক বল : দুটি আহিত কণা তাদের আধানের কারণে একে অপরের ওপর যে আকর্ষণ বা বিকর্ষণ বল প্রয়োগ করে তাকে তাড়িতটৌম্বক বল বলে। তড়িৎ বল এবং চৌম্বক বল ঘনিষ্ঠভাবে সম্পর্কিত। যখন দুটি আহিত কণা স্থির থাকে তখন তাদের ওপর কেবল তড়িৎ বল ক্রিয়া করে। যখন আহিত কণাগুলো গতিশীল থাকে তখনকার একটি অতিরিক্ত তড়িৎ বল হচ্ছে চৌম্বক বল।

সাধারণভাবে তড়িৎ প্রভাব ও চৌম্বক প্রভাব অবিচ্ছেদ্য সে কারণে বলটিকে তাড়িতচৌম্বক বল নামে অভিহিত করা হয়। মহাকর্ষ বলের ন্যায় তাড়িতচৌম্বক বলের পাল্লাও অসীম পর্যন্ত বিস্তৃত এবং এ বলের ক্রিয়ার জন্য কোনো মাধ্যমেরও প্রয়োজন হয় না। তাড়িতচৌম্বক বল মহাকর্ষ বলের চেয়ে অনেক বেশি শক্তিশালী। উদাহরণস্বরূপ দুটি প্রোটনের মধ্যকার তাড়িতচৌম্বক বল এদের মধ্যকার মহাকর্ষ বলের চেয়ে 10^{36} গুণ বেশি।

আমরা জানি পদার্থ ইলেকট্রন, প্রোটন নামক আহিত কণা দিয়ে গঠিত। যেহেতু তাড়িতটোম্বক বল মহাকর্ষ বলের চেয়ে অনেক বেশি শক্তিশালী তাই পারমাণবিক ও আণবিক ক্ষেত্রের সকল ঘটনা এই বল দ্বারাই নিয়ন্ত্রিত হয়। অবশ্য অন্য দুটি বল কেবলমাত্র নিউক্লিয় ক্ষেত্রে প্রযোজ্য। তাই বলা যায়, অণুপরমাণুর গঠন, রাসায়নিক বিক্রিয়া, পদার্থের তাপীয় ও অন্যান্য ধর্ম তাড়িতটোম্বক বলের ফল। লক্ষণীয় যে, আমাদের এই স্থল জগতের যাবতীয় বলসমূহ (মহাকর্ষ বল ব্যতীত) তড়িৎ বলের বিহিঃপ্রকাশ। ঘর্ষণ বল, স্পর্শ বল, স্প্রিং বা অন্যান্য বিকৃত বস্তুর মধ্যকার বল আহিত কণাগুলোর তড়িৎ বলেরই ফলশ্রুতি। ফোটন নামক এর প্রকার ভরহীন ও আধানহীন কণার পারস্পরিক বিনিময়ের ফলে এই বল কার্যকর হয়।

মহাকর্ষ বল সর্বদা আকর্ষণধর্মী। পক্ষান্তরে তাড়িতটৌম্বক বল আকর্ষণ বিকর্ষণ উভয়ধর্মী হতে পারে। আবার কোনো বস্তুর ভর কেবলমাত্র ধনাত্মক হতে পারে কিন্তু আধান ধনাত্মক বা ঋণাত্মক উভয় হতে পারে। বেশিরভাগ ক্ষেত্রে পদার্থ তড়িৎ নিরপেক্ষ অর্থাৎ ব্যাপকভাবে তড়িৎ বল শূন্য আর সকল জাগতিক ঘটনা মহাকর্ষ বল দ্বারাই নিয়ন্ত্রিত হয়।

৩. সবল নিউক্লিয় বল : পরমাণুর নিউক্লিয়াসে নিউক্লিয়া উপাদানসমূহকে একত্রে আবদ্ধ রাখে যে শক্তিশালী বল তাকে সবল নিউক্লিয় বল বলে। সবল নিউক্লিয় বল প্রোটন ও নিউট্রনকে নিউক্লিয়াসে আবদ্ধ রাখে। এটা স্পষ্ট যে, কোনো ধরনের আকর্ষণীয় বল না থাকলে প্রোটনসমূহের মধ্যকার বিকর্ষণী বলের কারণে নিউক্লিয়াস অস্থিতিশীল হয়ে যেতো। এ আকর্ষণী বল মহাকর্ষীয় বল হতে পারে না কারণ তড়িত বলের তুলনায় মহাকর্ষীয় বল অতি অকিঞ্চিতকর। সূতরাং নিউক্লিয়াসের স্থায়িত্বের জন্যে একটি নতুন বলের প্রয়োজন হয় আর সেই বলই হচ্ছে সবল নিউক্লিয় বল যা সকল মৌলিক বলগুলোর মধ্যে সর্বাপেক্ষা শক্তিশালী। তাড়িতটৌম্বক বল থেকে এটি প্রায় 100 গুণ বেশি শক্তিশালী। এটি আধান নিরপেক্ষ এবং এটি সমানভাবে প্রোটন- প্রোটন- নিউট্রন এবং প্রোটন- নিউট্রনের মধ্যে বোসন কণার পারস্পরিক বিনিময়ে কার্যকর হয়। পরবর্তীতে দেখা যায় প্রোটন ও নিউট্রন উত্যই কোয়ার্ক নামক আরো মৌলিক কণিকা দিয়ে গঠিত আর কোয়ার্ক কণিকাগুলো গ্লুয়ন নামে এক ধরনের আঠালো কণার পারস্পরিক বিনিময়ের ফলে উৎপন্ন তীব্র বলের প্রভাবে একত্রিত থাকে। এর পাল্লা অত্যন্ত কম, প্রায় নিউক্লিয়াসের ব্যাসার্ধের সমতুল্য অর্থাৎ প্রায় 10-15 m। এ বল নিউক্লিয়াসের স্থায়িত্বের নিয়ামক। উল্লেখ্য যে, ইলেকট্রনের মধ্যে এ ধরনের কোনো বল নেই।

দুর্বল নিউক্লিয় বল: যে স্বল্প পাল্লার ও স্বল্পমানের বল নিউক্লিয়াসের মধ্যে মৌলিক কণাগুলোর মধ্যে ক্রিয়া করে অনেক নিউক্লিয়াসে অস্থিতিশীলতার উদ্ভব ঘটায় তাকে দুর্বল নিউক্লিয় বল বলে। দুর্বল নিউক্লিয়াস বলের উদ্ভব হয় যখন কোনো নিউক্লিয়াস থেকে β রশার নির্গমন ঘটে। β রশার নির্গমনের সময় নিউক্লিয়াস থেকে একটি ইলেকট্রন এবং একটি অনাহিত কণা নিউট্রিনা (neutrino) নির্গত হয়। দুর্বল নিউক্লিয় বল মহাকর্ষ বলের ন্যায় অত দুর্বল নয় তবে সবল নিউক্লিয় বল ও তাড়িতটৌস্বক বলের চেয়ে অনেকটাই দুর্বল। এ বলের পাল্লা খুবই কম প্রায় 10-16 m থেকে 10-18 m। বিজ্ঞানীরা ধারণা করেন গেজ বোসন কণার পারম্পরিক বিনিয়োগের ফলে এই বল কার্যকর হয়।

মৌলিক বলগুলোর মধ্যে তুলনা

व्यानिक वन्यव्याप्त में व्यान विकास							
COMPASSE ON EXCENSION AND RESIDENCE OF THE PROPERTY OF THE OPERTY OF THE OPERATOR OPERATOR OF THE OPERATOR OPERATOR OF THE OPERATOR OPERATOR OPERATOR OPERATOR OPERATOR OPERATOR OPERATOR OPER	সবল নিউ <mark>ক্লিয় ব</mark> ল	তাড়িতচৌশ্বক বল	দুৰ্বল নিউক্লিয় বল	মহাকর্ষ বল			
উদাহরণ	প্রোটন ও নি <mark>উট্রনকে</mark> একত্রে আবদ্ধ করে নিউক্লিয়াস গঠন করে	ইলেকট্রনকে নিউক্লিয়াসের সাথে আবদ্ধ করে পরমাণু গঠন,করে	নিউক্লিয় <mark>বিটাক্ষ</mark> য়ের জন্য দায়ী	নক্ষত্রগুলোকে একত্রিত করে গ্যালাক্সি গঠন করে			
পাল্লা	10 ⁻¹⁵ m	অসীম	10 ⁻¹⁶ m	অসীম			
আপেক্ষিক সবলতা (সবল নিউক্লিয় বলের সাপেক্ষে)	1	10-2	10-11	10-41			
আপেক্ষিক সবলতা (মহাকর্ষ বলের সাপেক্ষে)	10 ⁴¹	10 ³⁹	1030	1			
বাহক কণা	গ্ৰুঅন	ফোটন	W ও Z বোসন	গ্রাভিটন			

সকল মৌলিক বলের জন্য বাহক কণিকা প্রয়োজন। তাড়িতটৌম্বক বলের জন্য এরকম বাহক কণিকা হচ্ছে ফোটন। এর অস্তিত্ব আমরা গত শতকের গোড়াতেই জানতে পেরেছি। সবল নিউক্লিয় বলের জন্য বাহক কণিকা হচ্ছে গ্লুজন (gluon)। মহাকর্ষ বলের জন্যও একটি বাহক কণিকা গ্লাভিটনের (graviton) প্রস্তাব করা হয়েছে। যদিও এখনো পর্যন্ত এর অস্তিত্বের কোনো প্রমাণ পাওয়া যায়নি। আর দুর্বল নিউক্লিয় বলের জন্য বাহক কণিকাগুলো হচ্ছে W+, W- এবং Z° বোসন যা গেজ বোসন (gauge boson) নামেও পরিচিত।

৪.৩। নিউটনের গতিসূত্র Newton's Laws of Motion

জড়তা

প্রত্যেক বস্তু যে অবস্থায় আছে সেই অবস্থায় থাকতে চায় অর্থাৎ বস্তু স্থির থাকলে স্থির থাকতে চায় আর গতিশীল থাকলে গতিশীল থাকতে চায়। বস্তুর এই স্থিতিশীল বা গতিশীল অবস্থার পরিবর্তন ঘটাতে হলে বল প্রয়োগ করতে হয়। পদার্থের নিজস্ব অবস্থা বজায় রাখতে চাওয়ার এই যে ধর্ম তাই জড়তা।

সংজ্ঞা : পদার্থ যে অবস্থায় আছে চিরকাল সেই অবস্থায় থাকতে চাওয়ার যে প্রবণতা বা সেই অবস্থা বজায় রাখতে চাওয়ার যে ধর্ম তাকে জড়তা বলে।

ভর (mass) হচ্ছে পদার্থের জড়তার পরিমাপ। অন্য কথায় কোনো একটি বস্তুর তার বেগের পরিবর্তনকে বাধা দেয়ার পরিমাপই হচ্ছে ভর। একটি চলমান খালি ভ্যান গাড়িকে থামানোর চেয়ে ইট বোঝাই চলমান ভ্যান গাড়িকে থামানো অনেক বেশি কষ্টকর। খালি ভ্যানের চেয়ে ইট ও ভ্যানের মিলিত ভর বেশি বলেই এটি ঘটে। ভর একটি ঙ্কেলার রাশি এবং একাধিক ভরকে সাধারণ গাণিতিক নিয়মে যোগ করা যায়।

১৬৮৭ সালে স্যার আইজ্যাক <mark>নিউটন তাঁর</mark> অমর গ্রন্থ "ন্যাচারালিস ফিলো<mark>সোফিয়া</mark> প্রিন্সিপিয়া ম্যাথেমেটিকা"তে বস্তুর ভর, গতি ও বলের মধ্যে সম্পর্ক স্থাপ<mark>ন করে</mark> তিনটি সূত্র প্রকাশ করেন। এ তিনটি সূত্র <mark>নিউটনে</mark>র গতি সূত্র নামে পরিচিত।

্রপ্রথম সূত্র : বাহ্যিক <mark>বল প্র</mark>য়োগে বস্তুর অবস্থার পরিবর্তন করতে বাধ্<mark>য না করলে</mark> স্থির বস্তু চিরকাল স্থিরই থাকবে এবং গতিশীল বস্তু <mark>সমবে</mark>গে অর্থাৎ সমদ্রুতিতে সরলপথে চলতে থাকবে।

দ্বিতীয় সূত্র : বস্তুর <mark>ভরবে</mark>গের পরিবর্তনের হার তার ওপর প্রযুক্ত বলের সম<mark>ানুপা</mark>তিক এবং বল যেদিকে ক্রিয়া করে বস্তুর ভরবেগের পরি<mark>বর্তন</mark>ও সেদিকে ঘটে।

তৃতীয় সূত্র : প্রত্যেক <mark>ক্রিয়ার</mark>ই একটা সমান ও বিপরীত প্রতিক্রিয়া আছে।

8.8। নিউটনের প্রথ<mark>ম গতি</mark> সূত্র Newton's First Law of J

Newton's First Law of Motion

সূত্র : বাহ্যিক বল প্রয়োগে <mark>বস্তুর অবস্থার পরিবর্তন করতে বাধ্য না করলে</mark> স্থির বস্তু চিরকাল স্থিরই থাকবে এবং গতিশীল বস্তু সমদ্রুতিতে সরল পথে চলতে থাকবে।

এ সূত্রকে অনেক সময় জড়তার সূত্র বলা হয়। কেননা, "জড়তা" মানেই হচ্ছে কোনো পরিবর্তনকে বাধা দেওয়া। আর এ সূত্র থেকে পাওয়া যায় কোনো বস্তু তার যে বেগ আছে (শূন্য বেগসহ) সেই বেগ বজায় রাখতে চায়।

যদি কোনো বস্তু স্থির থাকে বা সম্দ্রুতিতে সরল পথে চলে, তাহলে তার ত্বরণ শূন্য হয়। তাই প্রথম সূত্রকে নিমোজভাবে প্রকাশ করা যেতে পারে "যদি কোনো বস্তুর ওপর বল প্রয়োগ করা না হয়, তাহলে তার ত্বরণ শূন্য হয়।" যেহেতু বল হচ্ছে একটি ভেক্টর রাশি, তাই দুই বা ততোধিক বল সংযুক্ত হয়ে নিট (net) শূন্য বল প্রদান করতে পারে। কোনো বস্তুর ওপর প্রযুক্ত নিট বল হচ্ছে বস্তুর ওপর প্রযুক্ত স্বতন্ত্র বলগুলোর ভেক্টর সমষ্টি। কোনো বস্তুর ওপর প্রযুক্ত স্বতন্ত্র বলগুলো যদি যথাক্রমে $\overrightarrow{F_1}$, $\overrightarrow{F_2}$ ইত্যাদি হয় তাহলে নিট বল $\Sigma\overrightarrow{F}$ হবে

$$\Sigma \overrightarrow{F} = \overrightarrow{F_1} + \overrightarrow{F_2} + \overrightarrow{F_3} + \dots + \dots$$

নিট বল শূন্য হওয়া আর কোনো বল ক্রিয়া না করা একই কথা। নিউটনের প্রথম সূত্রে এ তথ্য ব্যবহার করে আমরা সূত্রটিকে বিবৃত করতে পারি, "যদি কোনো বস্তুর ওপর নিট বল শূন্য হয় ($\Sigma \overrightarrow{F} = \overrightarrow{0}$), তাহলে বস্তুটির ত্বরণও শূন্য হবে ($\overrightarrow{a} = \overrightarrow{0}$)।

৪.৫। নিউটনের দ্বিতীয় গতি সূত্র : বলের পরিমাপ

Newton's Second Law of Motion: Measurement of Force

সূত্র : কোনো বস্তুর ভরবেগের পরিবর্তনের হার তার ওপর প্রযুক্ত বলের সমানুপাতিক এবং বল যে দিকে ক্রিয়া করে বস্তুর ভরবেগের পরিবর্তনও সে দিকে ঘটে।

ভরবেগ বা রৈখিক ভরবেগ (Momentum or Linear Momentum)

ধরা যাক, দুটি বস্তু ধাক্কা খেল। ধাক্কার পর বস্তুগুলো কোন দিকে যাবে—এটি কিসের দ্বারা নির্ধারিত হবে ? কোন্টি বড়, কোন্টি ছোট অর্থাৎ তাদের ভর দ্বারা কোন্টি বেশি দ্রুত চলছে, কোনটি কম দ্রুত চলছে অর্থাৎ তাদের বেগ দ্বারা ? কোনটি বেশি গুরুত্বপূর্ণ -ভর না বেগ ? বস্তুগুলো কোন দিকে যাবে কীভাবে তা নির্ণয় করা হয় ? এ সকল প্রশ্নের জবাবের জন্য ভরবেগের ধারণা অত্যন্ত গুরুত্বপূর্ণ। আমরা আমাদের অভিজ্ঞতা থেকে দেখতে পাই, একটি গতিশীল টেবিল টেনিস বলকে থামানোর চেয়ে একটি গতিশীল টোকল থামানো অনেক কঠিন। কোনো গতিশীল বস্তুকে আমরা যদি থামাতে চাই তাহলে আমরা যে প্রতিবন্ধকতার সম্মুখীন হই তার একটি পরিমাপ হচ্ছে ভরবেগ। ভরবেগ হচ্ছে বস্তুর একটি ধর্ম যা বস্তুর ভর এবং বেগের সাথে সম্পর্কিত। বস্তুর ভর যত বেশি হবে এবং বস্তু যত দ্রুত চলবে তার ভরবেগও তত বেশি হবে।

সংজ্ঞা : বস্তুর ভর ও বেগের গুণফলকে ভরবেগ বলে।

ব্যাখ্যা : কোনো বস্তুর ভর m এবং বেগ \overrightarrow{v} হলে তার ভরবেগ

$$\overrightarrow{p} = \overrightarrow{m} \overrightarrow{v} \qquad \dots \tag{4.1}$$

এই বেগ \overrightarrow{v} বলতে আমরা আসলে বুঝি রৈখিক বেগ যা বস্তুর চলন গতির সাথে সংশ্লিষ্ট। এটি কৌণিক বেগ থেকে সম্পূর্ণ ভিন্ন। তাই এই রৈখিক বেগ বেগ \overrightarrow{v} এর সাথে সংশ্লিষ্ট ভরবেগকে রৈখিক ভরবেগ বলা হয়, যা ঘূর্ণন গতির সাথে সংশ্লিষ্ট কৌণিক ভরবেগ থেকে আলাদা। সুতরাং অন্য কোনোভাবে উল্লেখ না থাকলে পদার্থবিজ্ঞানের পরিভাষায় আমরা ভরবেগ \overrightarrow{p} বলতেই বুঝি রৈখিক ভরবেগ।

যেহেতু বেগ একটি ভেক্টর রাশি, <mark>কাজে</mark>ই ভরবেগও একটি ভেক্টর রাশি। এর দিক বেগের <mark>দিকে। মাত্রা ও একক:</mark> ভরবেগের মাত্রা <mark>হলো ভর imes</mark> বেগের মাত্রা অর্থাৎ MLT^{-1} এবং এ<mark>কক হ</mark>লো ভরের একক imes বেগের একক imes তারের একক imes বেগের একক তার্থাৎ imes imes imes imes imes imes তারের একক imes বেগের একক তার্থাৎ imes imes imes imes imes imes তারের একক imes বেগের একক তার্থাৎ imes imes

$\overrightarrow{\mathbf{F}} = m \overrightarrow{\mathbf{a}}$ সম্পর্ক প্রতিপাদন

ধরা যাক, কোনো বস্তুর ভর m, বেগ \overrightarrow{v} এবং ভরবেগ \overrightarrow{p} । এর ওপর \overrightarrow{F} বল্ল প্রযুক্ত হলে এর ভরবেগের পরিবর্তন ঘটে। নিউটনের গতির দ্বিতীয় সূত্রানুসারে, বস্তুর ভরবেগের পরিবর্তনের হার $\frac{d \ p}{dt}$ তার ওপর প্রযুক্ত বলের (\overrightarrow{F}) এর সমানুপাতিক অর্থাৎ,

$$\frac{d\overrightarrow{p}}{dt} \propto \overrightarrow{F}$$

$$\exists I, \frac{d}{dt} (m\overrightarrow{V}) \propto \overrightarrow{F}$$

$$\exists I, m \frac{d\overrightarrow{V}}{dt} \propto \overrightarrow{F}$$

$$\exists I, m \overrightarrow{a} \propto \overrightarrow{F}$$

$$\exists I, m \overrightarrow{a} = K\overrightarrow{F}$$

এখানে K হচ্ছে একটি সমানুপাতিক ধ্রুবক। এর মান রাশিগুলোর এককের ওপর নির্ভর করে। এসআই পদ্ধতিতে বলের একক নিউটনের সংজ্ঞা এমনভাবে দেওয়া হয় যাতে K এর মান 1 হয়। যখন m=1 kg এবং a=1 m s $^{-2}$ তখন

পদার্থ-১ম (হাসান) -১৫(ক)

 $F=1{
m N}$ ধরলে উপরিউক্ত সমীকরণের K=1 হয়। সুতরাং নিউটনের সংজ্ঞা হলো, "যে পরিমাণ বল $1~{
m kg}$ ভরের কোনো বস্তুর ওপর ক্রিয়া করে $1~{
m m~s^{-2}}$ তুরণ সৃষ্টি করে তাকে $1{
m N}$ বলে।"

অতএব,
$$\overrightarrow{F} = m \overrightarrow{a}$$
 ... (4.2)

বা, বল = ভর × ত্বরণ

(4.2) সমীকরণের সাহায্যে আমরা বল পরিমাপ করতে পারি। ভর ও তুরণের গুণফল দ্বারা বল পরিমাপ করা হয়।
নিউটনের দ্বিতীয় সূত্র বলের সংজ্ঞা প্রদান করে-যা কোনো বস্তুতে তুরণ সৃষ্টি করে তাই হচ্ছে বল। কোনো একটি
বস্তুর ওপর যদি কেবলমাত্র একটি বলই ক্রিয়া করে, তাহলে ত্বরণের অভিমুখ হবে বলের অভিমুখে এবং ত্বরণের মান হবে
বলের মানের সমানুপাতিক।

কোনো বস্তুর ওপর যদি একাধিক বল প্রযুক্ত হয় তাহলে বস্তুর ওপর প্রযুক্ত স্বতন্ত্র বলগুলোর ভেক্টর সমষ্টিকে নিট (net) বল বলে। কোনো বস্তুর ওপর প্রযুক্ত স্বতন্ত্র বলগুলো যদি হয় যথাক্রমে $\overrightarrow{F_1}, \overrightarrow{F_2}, \overrightarrow{F_3} \dots$ ইত্যাদি, তাহলে নিট বল $\Sigma\overrightarrow{F}$ হবে,

$$\Sigma \overrightarrow{F} = \overrightarrow{F_1} + \overrightarrow{F_2} + \overrightarrow{F_3} + \dots$$

সুতরাং সে ক্ষেত্রে নিউটনের গতির দ্বিতীয় সূত্র তথা বল ও ত্রণের সম্পর্কের (4·2 সমীকরণ) রূপ হয়,

$$\sum \overrightarrow{F} = m \overrightarrow{a} \qquad \dots \tag{4.3}$$

আবার, (4.3) সমীকরণকে লেখা যায়।

$$\overrightarrow{a} = \frac{1}{m} \Sigma \overrightarrow{F}$$

বা, $\overrightarrow{a} \propto \sum \overrightarrow{F}$ (: ভ্র m ধ্রুব)

সুতরাং নিউটনের দ্বিতী<mark>য় সূত্র</mark>কে এভাবেও বিবৃত করা যায়, *"কোনো বস্তুর <mark>ত্বরণ বস্তুর ওপর প্রযুক্ত নিট রলের</mark> সমানুপাতিক।"*

(4.3) সমীকরণে বস্তুর ভর m হচ্ছে বস্তুর ত্রণ ও প্রযুক্ত নিটবলের মধ্যকার সমানুপাতিক ধ্রুবক। একটি নির্দিষ্ট নিট বলের জন্য বেশি ভরের বস্তুর ত্রণ কম হয়। সুতরাং বস্তুর ভর হচ্ছে বস্তুর সেই ধর্ম যা বস্তুর বেগের কোনো পরিবর্তনকে বাধা দান করে। যেহেতু জড়তার অর্থ হচ্ছে কোনো পরিবর্তনকে বাধা দেওয়া, কাজেই এই ভরকে অনেক সময় জড়তাভর বা জাড্যভর (inertial mass) বলা হয়।

মাত্রা: (4,2) সমীকরণ থেকে দেখা যায় যে, বলের মাত্রা হবে MLT⁻²

বলের কয়েকটি অপ্রচলিত একক:

সারা বিশ্বব্যাপী পরিমাপের এসআই পদ্ধতির প্রচলন হওয়ায় এখন বল পরিমাপ করা হয় কেবলমাত্র নিউটন (Newton N) এককে। এসআই পদ্ধতি প্রচলনের পূর্বে বলের বেশ কয়েকটি একক প্রচলিত ছিল, যেগুলো এখন আর ব্যবহৃত হয় না। সেই অপ্রচলিত এককগুলো হচ্ছে, ১. ডাইন, ২. পাউন্ডাল, ৩. গ্রাম-ওজন, ৪. পাউন্ড-ওজন এবং ৫. কিলোগ্রাম-ওজন। বর্তমানে প্রচলিত নিউটনকে তখন MKS পদ্ধতিতে প্রম একক বলা হতো।

১. ডাইন : ডাইন হচ্ছে CGS পদ্ধতিতে বলের পরম একক। যে পরিমাণ বল 1g ভরের কোনো বস্তুর উপর ক্রিয়া করে 1 cm s⁻² ত্বরণ সৃষ্টি করতে পারে তাকে এক ডাইন (1 dyne) বল বলে।

1 dyne =
$$1g \times \frac{1 \text{ cm}}{s^2} = 1g \text{ cm s}^{-2}$$

২. পাউন্ডান্গ : পাউন্ডান্স হচ্ছে FPS পদ্ধতিতে বলের পরম একক। যে পরিমাণ বল 1 পাউন্ড 1 lb ভরের কোনো বস্তুর উপর ক্রিয়া করে 1ft s⁻² ত্বরণ সৃষ্টি করতে পারে তাকে এক পাউডান (1 poundal) বল বলে।

1 poundal = 1 lb
$$\times \frac{1 \text{ ft}}{s^2}$$
 = 1 lb ft s⁻²

বলের এসআই একক নিউটনের সাথে ডাইন ও পাউভালের সম্পর্ক হচ্ছে $1N=10^5 \, \mathrm{dyne} = 7.2324 \, \mathrm{poundal}$ ৩. গ্রাম-ওজন : গ্রাম-ওজন হচ্ছে CGS পদ্ধতিতে বলের অভিকর্ষীয় একক। 1g ভরের কোনো বস্তুকে পৃথিবী তার কেন্দ্রের দিকে যে বলে আকর্ষণ করে তাকে এক গ্রাম-ওজন ($1 \, \mathrm{gm-wt}$) বল বলে।

1 gm-wt = $1g \times g$ cm s⁻² [একেত্রে g = 980 cm s⁻²] = 980 dyne

8. পাউন্ত-ওজন: পাউন্ত-ওজন হচ্ছে FPS পদ্ধতিতে বলের অভিকর্ষীয় একক। 1 lb ভরের কোনো বস্তুকে পৃথিবী তার কেন্দ্রের দিকে যে বল দ্বারা আকর্ষণ করে তাকে এক পাউন্ত-ওজন (1 lb-wt) বল বলে।

1 lb-wt = 1b × g ft s⁻² [এক্ষেত্রে g = 32 ft s⁻²] = 32 poundal

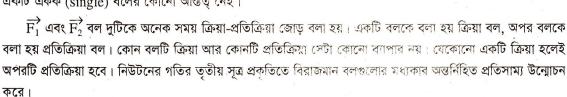
কৈ কেলোগ্রাম-ওজন : কিলোগ্রাম-ওজন হচ্ছে MKS পদ্ধতিতে বলের অভিকর্ষীয় একক। 1kg ভরের কোনো বস্তুকে পৃথিবী তার কেন্দ্রের দিকে যে বলে আকর্ষণ করে তাকে এক কিলোগ্রাম-ওজন (1 kg-wt) বল বলে।

1 kg-wt = 1 kg × g m s⁻² [47 ($\frac{1}{2}$ g = $\frac{9.8 \text{ m s}^{-2}}{2}$] = $\frac{9.8 \text{ N}}{2}$.

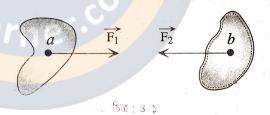
8.৬। নিউটনের তৃতীয় গতি <mark>সূত্র</mark> ও রৈখিক ভরবেগের নিত্যতা

Newton's Third Law <mark>of M</mark>otion and Conservation of Linear Momentum তৃতীয় গতিসূত্ৰ (Third Law of Motion)

সূত্র: প্রত্যেক ক্রিয়ারই একটি সমান ও বিপরীত প্রতিক্রিয়া আছে।


ব্যাখ্যা : নিউটনের প্রথম ও দ্বিতী<mark>য় সূত্র</mark> হচ্ছে একটি মাত্র (single) বস্তু সম্পর্কে, অপরপক্ষে <mark>তৃতী</mark>য় সূত্র দুটি বস্তুর সাথে সম্পর্কিত। ধরা যাক, a ও b দুটি বস্তু পরম্পরের ওপর আকর্ষণ বল প্রয়োগ করে (চিত্র ৪০১)।

ধরা যাক, $\overrightarrow{F_1}$ হলো প্রথম বস্তু a-এর ওপর দিতীয় বস্তু b কর্তৃক প্রযুক্ত আকর্ষণ বল এবং $\overrightarrow{F_2}$ হলো দ্বিতীয় বস্তু b-এর ওপর প্রথম বস্তু a কর্তৃক প্রযুক্ত আকর্ষণ বল ।


নিউটনের তৃতীয় সূত্রানুসারে আমরা পাই,

$$\overrightarrow{F_2} = -\overrightarrow{F_1} \qquad \dots \qquad (4.4)$$

প্রকৃতিতে বলসমূহ জোড়ায় জোড়ায় বিরাজ করে। একটি একক (single) বলের কোনো অস্তিত্ নেই।

ক্রিয়া ও প্রতিক্রিয়া বল সবসময়ই দুটি ভিন্ন বস্তুর ওপর ক্রিয়া করে—কখনোই একই বস্তুর ওপর ক্রিয়া করে না। প্রতিক্রিয়া বলটি ততক্ষণই থাকবে যতক্ষণ পর্যন্ত ক্রিয়া বলটি থাকবে। ক্রিয়া থেমে গেলে প্রতিক্রিয়াও থেমে যাবে। এ ক্রিয়া ও প্রতিক্রিয়া, বস্তুগুলোর সাম্যাবস্থায় বা গতিশীল অবস্থায় থাকা বা একে অপরের সংস্পর্শে থাকা বা না থাকার ওপর নির্ভরশীল নয়—সর্বত্রই বর্তমান থাকে।

৪.৭। ভরবেগের নিত্যতা বা সংরক্ষণ

Conservation of Momentum

নিউটনের গতির প্রথম সূত্র থেকে আমরা জানি যে, কোনো বস্তুর ওপর প্রযুক্ত নিট (net) বল যদি শূন্য হয়, তাহলে বস্তুটি সরল পথে সমদ্রুতিতে চলতে থাকে অর্থাৎ এর বেগ প্রুব থাকে। সময়ের সাপেক্ষে বেগ \overrightarrow{v} যদি প্রুব হয়, তাহলে ভরবেগ $\overrightarrow{p}=m\overrightarrow{v}$ ও সময়ের সাপেক্ষে স্থির থাকে।

অন্য কথায়, কোনো বস্তুর ওপর নিট বল শূন্য হলে, বস্তুটির ভরবেগ $\stackrel{\longrightarrow}{p}$ সংরক্ষিত থাকে।

একাধিক বস্তুর সমন্বয়ে গঠিত কোনো ব্যবস্থার (system) ওপর যদি প্রযুক্ত নিট বাহ্যিক বল শূন্য হয়, তাহলে সময়ের সাপেক্ষে ব্যবস্থাটির মোট ভরবেগ \overrightarrow{P} পরিবর্তিত হয় না। একে ভরবেগের সংরক্ষণ সূত্র বা নিত্যতার সূত্র বলা হয়।

যেহেতু আগেই উল্লেখ করা হয়েছে ভরবেগ বলতে আমরা রৈখিক ভরবেগই বুঝে থাকি, সুতরাং ভরবেগের সংরক্ষণ সূত্র বলতেই আমরা রৈখিক ভরবেগের সংরক্ষণ সূত্রকে বুঝি। উল্লেখযোগ্য যে, কৌণিক ভরবেগের জন্য আলাদা সংরক্ষণ সূত্র আছে যা ৪.২০ অনুচ্ছেদে আলোচনা করা হয়েছে।

সূত্র: যখন কোনো ব্যবস্থার ওপর প্র<mark>যুক্ত নিট বাহ্যিক বল শূন্য হয়, তখন</mark> ব্যবস্থাটির মোট ভরবেগ সংরক্ষিত থাকে।

ব্যাখ্যা : ধরা যাক, কোনো একটি ব্যবস্থার আদি ভরবেগ $\overrightarrow{P_i}$, পরবর্তী কোনো এক সময় ব্যবস্থাটির ভরবেগ $\overrightarrow{P_f}$, তাহলে ভরবেগের সংরক্ষণ সূত্র অনুসারে, $\overrightarrow{P_i} = \overrightarrow{P_f}$... (4.5)

যেহেতু ভরবেগ \overrightarrow{P} এ<mark>কটি ভে</mark>ন্টর রাশি, সুতরাং \overrightarrow{P} সংরক্ষিত হওয়ার অর্থ এর মা<mark>ন ও দিক উভয়েই অপরিবর্তিত থাকা। সমগ্র ব্যবস্থার ভরবেগ সংরক্ষিত বা স্থির থাকলেও এর অন্তর্গত স্বতন্ত্র বস্তুগুলোর ভরবেগ কিন্তু পরিবর্তিত হতে পারে। ব্যবস্থাটির অভ্যন্তরীণ বলসমূহ এর বস্তুগুলোর ভরবেগ স্বতন্ত্রভাবে পরিবর্তন করতে পারে, কিন্তু অভ্যন্তরীণ বল ব্যবস্থাটির মোট ভরবেগের কোনে; পরিবর্তন করতে পারে না।</mark>

সূত্রের প্রতিপাদন: দুটি বস্তু বিবেচনা করা যাক (চিত্র: ৪·২)। বস্তুগুলো একে অপরের ওপর বল প্রয়োগ করতে পারে, কিন্তু এদের ওপর কোনো বাহ্যিক বল নেই। ধরা যাক, কোনো এক সময় বস্তুদ্ধা সংঘর্ষে লিপ্ত হলো। ধরা যাক, এই সংঘর্ষে F হচ্ছে প্রথম

বস্তুর ওপর দ্বিতীয় বস্তু কর্তৃক প্রযুক্ত বল এবং $\overrightarrow{P_2}$ হচ্ছে দ্বিতীয় বস্তুর ওপর প্রথম বস্তু কর্তৃক প্রযুক্ত বল । ধরা যাক, কোনো সময় t তে প্রথম বস্তুর ভরবেগ $\overrightarrow{p_1}$ এবং দ্বিতীয় বস্তুর ভরবেগ $\overrightarrow{p_2}$ । আমরা প্রতিটি বস্তুর ক্ষেত্রে নিউটনের দ্বিতীয় সূত্র প্রয়োগ করে পাই,

$$\overrightarrow{F_1} = \overrightarrow{dp_1}$$
 এবং $\overrightarrow{F_2} = \overrightarrow{dp_2}$

নিউটনের গতির তৃতীয় সূত্র থেকে আমরা জানি, $\overrightarrow{F_1}$ এবং $\overrightarrow{F_2}$ সমান ও বিপরীতমুখী; অর্থাৎ

$$\overrightarrow{F_1} = -\overrightarrow{F_2}$$

$$\overrightarrow{\text{al}}, \overrightarrow{F_1} + \overrightarrow{F_2} = \overrightarrow{0}$$

$$\overrightarrow{\text{al}}, \frac{d\overrightarrow{p_1}}{dt} + \frac{d\overrightarrow{p_2}}{dt} = \overrightarrow{0}$$

$$\overrightarrow{\text{al}}, \frac{d}{dt} \left(\overrightarrow{p_1} + \overrightarrow{p_2} \right) = \overrightarrow{0}$$

কিন্তু
$$\overrightarrow{p_1}$$
 + $\overrightarrow{p_2}$ হচ্ছে ব্যবস্থার মোট ভরবেগ বা, \overrightarrow{P} $\therefore \frac{d\overrightarrow{P}}{dt} = \overrightarrow{0}$

যেহেতু সময়ের সাপেক্ষে মোট ভরবেগ $\overrightarrow{P}=\overrightarrow{p_1}+\overrightarrow{p_2}$ এর অন্তরক শূন্য, তাই মোট ভরবেগ \overrightarrow{P} ধ্রুব থাকে, অর্থাৎ

$$\overrightarrow{P} = \overrightarrow{p_1} + \overrightarrow{p_2} = 3$$
 ... (4.6)

$$\overrightarrow{\mathbf{A}}, \overrightarrow{\mathbf{P}}_{i} = \overrightarrow{\mathbf{P}}_{f}
\overrightarrow{\mathbf{A}}, \overrightarrow{\mathbf{p}}_{1i} + \overrightarrow{\mathbf{p}}_{2i} = \overrightarrow{\mathbf{p}}_{1f} + \overrightarrow{\mathbf{p}}_{2f}
\dots$$

$$\dots$$

$$\dots$$

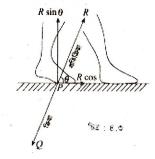
$$\dots$$

$$\dots$$

এখানে i এবং f পাদাঙ্ক যথাক্রমে আদি (initial) এবং শেষ (final) অবস্থা নির্দেশ করে।

সুতরাং দেখা যায় যে, সংঘর্ষের আগে কোনো ব্যবস্থার ভরবেগের ভেক্টর সমষ্টি আর সংঘর্ষের পরে ভরবেগের ভেক্টর সমষ্টি সর্বদা সমান থাকে। এটিই ভরবেগের সংরক্ষণ বা নিত্যতার সূত্র।

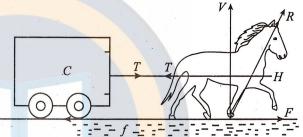
একটি একমাত্রিক সংঘর্ষের কথা বিবেচনা করা <u>যাক। ধরা যাক, m_1 ও m_2 ভরের দুটি বস্তু সরলরেখা বরাবর চলতে চলতে কোনো এক সময় সংঘর্ষে লিপ্ত হয়। সংঘর্ষের আগে তাদের বেগ যথাক্রমে v_{1i} ও v_{2i} এবং সংঘর্ষের পরে তাদের বেগ যথাক্রমে v_{1f} ও v_{2f} । ভরবেগের সংরক্ষণ সূত্র অনুসারে (4.7) সমীকরণটি হবে,</u>


$$m_1 v_{1i} + m_2 v_{2i} = m_1 v_{1f} + m_2 v_{2f}$$
 ... (4.8)

8.৮। নিউটনের গতিসূত্র ও ভরবেগের নিত্যতা সূত্রের কয়েকটি ব্যবহার Few Uses of Newton's Laws of Motion and Law of Conservation of Energy

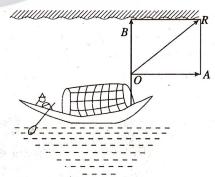
১। ভূমির ওপর দাঁড়ানো: মনে করি, এক ব্যক্তি ভূমির ওপর দাঁড়িয়ে আছেন। লোকটির পা ভূমির ওপর তার ওজনের সমান বল প্রয়োগ করে। এ বল ভূমির ওপর লোকটির ওজনের ক্রিয়া। যতক্ষণ পর্যন্ত লোকটি স্থিরভাবে দাঁড়িয়ে থাকবেন ততক্ষণ পর্যন্ত ভূমিও সমান বলে লোকটির পা-কে খাড়া ওপরের দিকে ঠেলবে। ভূমির এ বল হলো প্রতিক্রিয়া। এ অবস্থায় ক্রিয়া ও প্রতিক্রিয়া বল পরম্পরের সমান ও বিপরীত হবে। লোকটি যখন কোনো কর্দমান্ত ভূমির ওপর বা পানির ওপর দাঁড়াতে যান তখন ঘটনা অন্য রকম ঘটে। লোকটি নিচের দিকে নামতে থাকেন বা ডুবে যেতে থাকেন। কর্দমান্ত ভূমি বা পানি সমান ও বিরীতমুখী প্রতিক্রিয়া বল দেয়া সন্ত্বেও এরূপ ঘটার কারণ হলো পানির অণুগুলোর মধ্যে আন্তঃআণবিক বল কঠিন ভূমির আন্তঃআণবিক বলের চেয়ে অনেক কম। লোকটির ওজন পানির ওপর ক্রিয়া করায় পানির অণুগুলো সহজে স্থানচ্যুত হয়ে আন্তঃআণবিক ববধান বৃদ্ধি করে ফলে লোকটি নিচের দিকে নামতে থাকেন। এ জন্যই কর্দমাক্ত বা বালুকাময় জায়গায় হাঁটা কিছুটা অসুবিধাজনক।

২। হাঁটা: হাঁটার সময় আমরা সামনের পা দ্বারা মাটিতে খাড়াভাবে বল দেই আর পেছনের পা দ্বারা তির্যকভাবে PQ (চিত্র: ৪.৩) বরাবর মাটিতে বল দেই। পেছনের পায়ের PQ বরাবর দেয় বলের ভূমি প্রতিক্রিয়া PR বরাবর কাজ করে। এখন এ প্রতিক্রিয়া বলকে অনুভূমিক ও উল্লম্ব উপাংশে ভাগ করা যায়। অনুভূমিক উপাংশ ($R\cos\theta$) আমাদেরকে সামনের দিকে এগিয়ে নেয় আর উল্লম্ব উপাংশ-($R\sin\theta$) শরীরের ওজন বহন করতে সহায়তা করে।



আমরা দেখতে পাই দৌড় প্রতিযোগিতায় দৌড়বিদরা দৌড়ের শুরুতে সামনের দিকে ঝুঁকে থাকেন। ফলে দৌড় শুরু করার সময় তারা তির্যকভাবে মাটিতে বল প্রয়োগ করেন। ফলে ভূমির প্রতিক্রিয়াও তির্যকভাবে সামনের দিকে ক্রিয়া করে। এ প্রতিক্রিয়ার অনুভূমিক উপাংশ দৌড়বিদকে সামনের দিকে এগিয়ে নিতে সাহায্য করে।

৩। ঘোড়ায় গাড়ি টানা : তোমাদের যদি প্রশ্ন করা হয় তোমরা কি কেউ ঘোড়ার গাড়ি দেখেছো ? প্রায় সবাই এক বাক্যে বলবে না। কারণ বিজ্ঞানের উনুতির সাথে সাথে ঘোড়ার গাড়ির প্রচলন এখন আর কোথাও নেই বললেই চলে। তবে নিউটনের তৃতীয় সূত্রের ব্যবহারের ঐতিহাসিক গুরুত্ব হিসেবে শিক্ষাক্রমে হয়তো ঘোড়ার গাড়ির ঘটনা বর্ণনা করতে বলা হয়েছে। ঘোড়া যখন গাড়িকে টানে তখন গাড়িও সমান বলে ঘোড়াকে টানে। তাহলে গাড়ি চলে কীভাবে ? মনে করি, C গাড়িটিকে H ঘোড়ায় টানছে (চিত্র : ৪.৪)। ঘোড়ার সাথে গাড়িটি একটি দড়ি দ্বারা সংযুক্ত। ঘোড়া গাড়িটিকে সামনের দিকে টানার জন্য দড়ির মধ্য দিয়ে গাড়ির ওপর যে টান T প্রয়োগ করবে সেটা হচ্ছে ক্রিয়া বল। নিউটনের তৃতীয় সূত্রানুসারে গাড়িও দড়ির মাধ্যমে ঘোড়ার ওপর সমান ও বিপরীত টান T প্রয়োগ করবে। এ অবস্থায় গাড়ি চলছে কীভাবে এ প্রশ্ন খুব স্বাভাবিকভাবেই মনে আসবে। আসলে ঘোড়া এগোবার জন্য পা দ্বারা তির্থকভাবে মাটিতে আঘাত করে ফলে ভূমিও একটি



চিত্ৰ: 8.8

সমান প্রতিক্রিয়া বল R ঘো<mark>ড়ার পা</mark>য়ের ওপর প্রয়োগ করে, এ প্রতিক্রিয়া বল অনুভূ<mark>মিক ও</mark> উল্লম্ব উপাংশে বিভক্ত হয়ে যায়। উল্লম্ব উপাংশ V ঘোড়ার ওজ<mark>নকে বহ</mark>ন করে আর অনুভূমিক উপাংশ F ঘোড়াকে <mark>সামনে</mark>র দিকে এগিয়ে নিতে চেষ্টা করে। যখন এই F গাড়ির চাকা ও ভূমি<mark>র মধ্য</mark>কার ঘর্ষণ বল f এর চেয়ে বেশি হয় তখন<mark>ই শুধু গা</mark>ড়িটি সামনের দিকে এগোবে।

8। নৌকার শুন টানা: এককালের নদীমাতৃক বাংলাদেশে বড় বড় মাল বোঝাই নৌকার দেখা পাওয়া যেত। স্রোতের অনুকূলে দাঁড় টেনে আর স্রোতের প্রতিকূলে শুন টেনে তাদের চলতে হতো। আজকাল ইঞ্জিনচালিত নৌকার বা ট্রলারের প্রচলন হওয়ায় এবং নদী ও খালে বিপুল সংখ্যক সেতু, পুল, কালভার্ট তৈরি হওয়ায় অযান্ত্রিক নৌযানে তথা নৌকায়ও আর শুন টানা হয় না। কিন্তু এর ঐতিহাসিক শুরুত্ব বিবেচনা করে হয়তো শিক্ষাক্রমে এ উদাহরণ অন্তর্ভুক্ত করা হয়েছে।

চিত্ৰ: 8.৫

একখানি দড়ি দিয়ে কুল থেকে টেনে নৌকা সামনের দিকে এগিয়ে নেয়াকে গুনটানা বলে। এ ঘটনাকে ভেক্টররাশির বিভাজন ও নিউটনের গতির তৃতীয় সূত্রের সাহায্যে ব্যাখ্যা করা যায়। ধরা যাক, OR বরাবর দড়ির টানের বল ক্রিয়া করছে (চিত্র: 8.৫) এ বল বিভাজিত হয়ে একটি বল নৌকার দৈর্ঘ্য বরাবর OA-এর দিকে ক্রিয়া করে নৌকাকে সামনের দিকে এগিয়ে নেয়। বলের অন্য উপাংশটি OA-এর লম্ব বরাবর OB-এর দিকে ক্রিয়া করে নৌকাকে কুলের দিকে নিতে চায়। পানির বিপরীত প্রতিক্রিয়া ও হালের সাহায্যে এ বলকে নাকচ করা হয়।

৫। বন্দুকের গুলি ছোঁড়া: গুলি ছোঁড়ার পর বন্দুককে পেছনের দিকে সরে আসতে দেখা যায়। ভরবেগের নিত্যতার সূত্র থেকে এর ব্যাখ্যা পাওয়া যায়। গুলি ছোঁড়ার পূর্বে বন্দুক ও গুলি উভয়ের বেগ শূন্য থাকে কাজেই তখন তাদের ভরবেগের সমষ্টি শূন্য। গুলি ছোঁড়ার পর সামনের দিকে গুলির কিছু ভরবেগ উৎপন্ন হয়। ভরবেগের নিত্যতার সূত্রানুযায়ী গুলি ছোঁড়ার আগের ভরবেগের সমষ্টি পরের ভরবেগের সমষ্টির সমান হতে হবে। মুতরাং গুলি ছোঁড়ার পরের ভরবেগের সমষ্টি সমান হতে হলে অর্থাৎ শূন্য হতে হলে বন্দুকেরও গুলির সমান ও বিপরীতমুখী একটা ভরবেগের সৃষ্টি হতে হবে। ফলে বন্দুককেও পেছনের দিকে সরে আসতে দেখা যায়।

ধরা যাক, M ভরের বন্দুক থেকে গুলি ছোঁড়ার পর m ভরের গুলিটি v বেগে বেরিয়ে যাচ্ছে। ধরা যাক, বন্দুকটির বেগ V। গুলি ছোঁড়ার আগে বন্দুক ও গুলির ভরবেগের সমষ্টি শূন্য। গুলি ছোঁড়ার পরে বন্দুক ও গুলির মোট ভরবেগ হবে MV+mv।

ভরবেগের নিত্যতার সূত্রানুসারে,

$$MV + mv = 0$$

∴ $MV = -mv$
∴ $V = -\frac{m}{M}v$
... (4.9)

- (4.10) সমীকরণ থেকে দেখ<mark>া যায়</mark> যে, বন্দুক ও গুলির বেগ পরস্পর বিপরীতমুখী। অ<mark>র্থাৎ গু</mark>লি ছোঁড়া হলে বন্দুকের পশ্চাৎ বেগের মান হবে $\frac{m}{M} \,
 u$ ।
- ৬। মহাশূন্য অভিযান তথা রকেটের গতি: জটিলতা পরিহার করার জন্য আমরা ধরে নিচ্ছি রকেটটি অভিকর্ষের আওতামুক্ত মহাশূন্যে গতিশীল। যখন রকেটটির ইঞ্জিন কর্তৃক গ্যাস নির্গমন করা হয়, তখন সেই গ্যাসের একটি ভরবেগ থাকে। তখন ভরবেগ সংরক্ষিত থাকার জন্য রকেট বিপরীত দিকে গতিপ্রাপ্ত হয় (চিত্র: ৪ ৬)। রকেট থেকে গ্যাস যখন একটি নির্দিষ্ট হারে নির্গত হতে থাকে, তখন গ্যাসের গতির বিপরীত দিকে রকেটটি একটি স্থির বল লাভ করে। এ বলকে ধাকা (thrust) বলে।

ব্যবহৃত জ্বালানির হার এবং নির্গত গ্যাসের বেগের অপেক্ষকরূপে এ ধাক্কাকে প্রকাশ করার জন্য আমরা একটি সমীকরণ প্রতিপাদন করতে পারি।

ধরা যাক, রকেট থেকে জ্বালানি তথা গ্যাস ν ধ্রুব বেগে নির্গত হচ্ছে। Δt সময়ে নির্গত গ্যাসের ভর Δm হলে, নির্গত গ্যাসের ভরবেগ হবে,

$$\Delta P = (\Delta m) v$$

নির্গত গ্যাসের এই ভরবেগ রকেটস্থ জ্বালানির ভরবেগের পরিবর্তনের সমান। ভরবেগের সংরক্ষণ সূত্রানুসারে জ্বালানির ভরবেগের এ পরিবর্তন রকেটটির ভরবেগের পরিবর্তনের সমান। কোনো বস্তুর ভরবেগের পরিবর্তন তার ওপর প্রযুক্ত বল এবং বলের ক্রিয়াকালের গুণফলের সমান। সুতরাং রকেটের ওপর প্রযুক্ত বল তথা ধাক্কা F হলে.

$$\therefore F \Delta t = (\Delta m) v$$

$$\exists i, F = \left(\frac{\Delta m}{\Delta t}\right) v \qquad \dots \qquad (4.11)$$

এখানে $\frac{\Delta m}{\Delta t}$ হচ্ছে জ্বালানি ব্যবহারের হার ।

কোনো মুহূর্তে রকেটের ভর M হলে ঐ মুহূর্তে তার ত্রণ α হবে,

$$a = \frac{F}{M} = \frac{1}{M} \left(\frac{\Delta m}{\Delta t}\right) v \qquad ... \qquad (4.11a)$$

রকেট পৃথিবীর অভিকর্ষ বলের সীমার মধ্যে থাকলে-এর গতিতে অভিকর্ষের প্রভাব বিস্তার করবে । অভিকর্ষজ ত্বরণ g হলে রকেটের ত্বরণ হবে $a=\frac{1}{M}\left(\frac{\Delta m}{\Delta t}\right)\nu-g$... (4.11b)

৪.৯। নিউটনের গতি সূত্রসমূহের পারস্পরিক সম্পর্ক Relation between Newton's Laws of Motion

দ্বিতীয় সূত্র থেকে প্রথম সূত্র

নিউটনের গতির প্রথম সূত্র এবং দ্বিতীয় সূত্রের তুলনা থেকে দেখা যায় যে, প্রথম সূত্র হচ্ছে দ্বিতীয় সূত্রের একটি বিশেষ রূপ। $\sum \overrightarrow{F} = m \overrightarrow{a}$ থেকে দেখা <mark>যায় যে</mark>, যখন $\sum \overrightarrow{F} = \overrightarrow{0}$ তখন $\overrightarrow{a} = \overrightarrow{0}$ হয়। সূত্রাং যখন বাইরে থেকে কোনো বল প্রযুক্ত হয় না অর্থাৎ নিট বল শূন্য হয় তখন,

$$\overrightarrow{a} = \overrightarrow{0}$$
 বা, $\frac{\overrightarrow{dv}}{dt} = \overrightarrow{0}$

বা, $\overrightarrow{v} = 4$ প্ৰবক।

সুতরাং বাইরে থেকে বস্তুর <mark>উপর</mark> কোনো বল প্রযুক্ত না হলে, বস্তুর বেগের কোনো <mark>পরিবর্তন হয় না, বস্তু যে অবস্থা</mark>য় ছিল সেই অবস্থায়ই থাকবে। অর্থাৎ বা<mark>হ্যিক ব</mark>ল প্রয়োগে বস্তুর অবস্থার পরিবর্তন করতে বাধ্য না করলে স্থির বস্তু চিরকাল স্থিরই থাকবে এবং গতিশীল বস্তু সমদ্রুতিতে সরলপথে চলতে থাকবে। এটিই নিউটনের প্রথম সূত্র। প্রথম সূত্র ও দ্বিতীয় সূত্র

আমরা নিউটনের গতির প্রথম সূত্র থেকে পাই, যদি কোনো বস্তুর উপর নিট বল শূন্য হয় $\left(\Sigma\overrightarrow{F}=\overrightarrow{0}\right)$, তাহলে বস্তুটির ত্বণও শূন্য হবে $\left(\overrightarrow{a}=\overrightarrow{0}\right)$ । বল শূন্য হলে ত্বণ যদি শূন্য হয়, তাহলে বল যত বেশি হবে স্বাভাবিকভাবে ত্বণও তত বেশি হবে। নিউটনের গতির দ্বিতীয় সূত্র থেকে আমরা পাই, বস্তুর ত্বণ তার উপর প্রযুক্ত বলের সমানুপাতিক। প্রথম সূত্র ও তৃতীয় সূত্র

ধরা যাক, A এবং B দুটি বস্তু মিলে একটি ব্যবস্থা (system)। এ ব্যবস্থাটি স্থির আছে অথবা সমবেগে গতিশীল আছে অর্থাৎ এর ত্বরণ শূন্য। সুতরাং এ ব্যবস্থার উপর প্রযুক্ত নিট বল শূন্য। এ ব্যবস্থার ওপর যদি বাইরে থেকে বল প্রযুক্ত না হয়, তাহলে ব্যবস্থাটির অভ্যন্তরীণ অর্থাৎ বস্তুদ্বয়ের পারস্পরিক নিট বলও শূন্য হবে। প্রথম সূত্র থেকে আমরা বলতে পারি,

$$\Sigma \overrightarrow{F} = \overrightarrow{0}$$

এখন যদি দ্বিতীয় বস্তু প্রথম বস্তুর উপর $\overrightarrow{F_1}$ বল প্রয়োগ করে আর প্রথম বস্তু দ্বিতীয় বস্তুর ওপর $\overrightarrow{F_2}$ বল প্রয়োগ করে, তাহলে

$$\Sigma \overrightarrow{F} = \overrightarrow{F_1} + \overrightarrow{F_2} = \overrightarrow{0}$$
 $\therefore \overrightarrow{F_2} = -\overrightarrow{F_1}$

যেটি আসলে নিউটনের তৃতীয় সূত্র।

8.১০। নিউটনের গতি সূত্রের সীমাবদ্ধতা

Limitations of Newton's Laws of Motion

নিউটনের গতি সূত্র প্রয়োগ করা যায় যখন বস্তুর বেগ আলোর বেগের তুলনায় অনেক কম থাকে। আলোর বেগের কাছাকাছি বেগ সম্পন্ন বস্তুর গতির ক্ষেত্রে আমরা নিউটনের গতি সূত্র প্রয়োগ করতে পারি না। সে ক্ষেত্রে আমাদেরকে আইনস্টাইনের আপেক্ষিকতার সূত্র ব্যবহার করতে হয়। অণু পরমাণুর মধ্যে যে সকল মৌলিক কণা আছে তাদের বেগ আলোর বেগের কাছাকাছি। এদের ক্ষেত্রেও নিউটনের গতি সূত্রের পরিবর্তে আইনস্টাইনের আপেক্ষিকতা সূত্র প্রয়োগ করা হয়।

৪.১১। বল, ক্ষেত্র ও প্রাবল্য

Force, Field and Intensity

ক্ষেত্র : ক্ষেত্র হলো এমন একটি অঞ্চল, যেখানে কোনো বস্তুর উপর অন্য একটি বস্তুর উপস্থিতির কারণে বল ক্রিয়া করে। কোনো একটি অঞ্চলে দুটি বস্তুকে কাছাকাছি রাখলে তারা পরস্পরকে নিজের দিকে টানে। এই বলকে বলা হয় মহাকর্ষ বল। কোনো বস্তুর আশেপাশে যে অঞ্চলব্যাপী এর মহাকর্ষীয় প্রভাব বজায় থাকে, অর্থাৎ অন্য কোনো বস্তু রাখা হলে সেটি আকর্ষণ বল অনুভব করে তাকে ঐ বস্তুর মহাকর্ষীয় বল ক্ষেত্র বা শুধু মহার্কীয় ক্ষেত্র বলে।

এভাবে দুটি তড়িৎ আধান কাছাকা<mark>ছি আন</mark>লে পরম্পর একে অপরের উপর বল প্রয়োগ করে। এ বল আকর্ষণধর্মী বা বিকর্ষণধর্মী উভয় প্রকার হতে পারে। কোনো তড়িৎ আধানের চারদিক যে অঞ্চল জুড়ে তড়িৎ প্র<mark>ভাব ব</mark>জায় থাকে বা বল ক্রিয়া করে অর্থাৎ অন্য একটি তড়িৎ আধানকে ঐ অঞ্চলে আনা হলে সেটি আকর্ষণ বা বিকর্ষণ বল অনুভব করে, তাকে ঐ তড়িৎ আধানের তড়িৎ বল ক্ষেত্রে বা তড়িৎ ক্ষেত্র বলে।

কোনো চুম্বকের চারদিকে যে অ<mark>ঞ্চলের</mark> মধ্যে অন্য একটি চুম্বক বা চৌম্বক পদার্থ আনলে এ<mark>দের উ</mark>পর চৌম্বক বল ক্রিয়া করে তাকে বলা হয় ঐ চুম্বকের ক্ষেত্র।

প্রাবল্য : একটি বল ক্ষেত্রের সর্বত্ত সমান বল ক্রিয়া করে না, অর্থাৎ বলক্ষেত্রের সর্বত্র প্র<mark>ভাব</mark> সমান নয়। বল ক্ষেত্রের কোনো বিন্দুতে প্রভাব কতটুকু প্রবল সেটা পরিমাপ করা হয় প্রাবল্য দারা। প্রাবল্য পরিমাপ করতে হলে বল ক্ষেত্রের বিভিন্ন বিন্দুতে একটি পরীক্ষণীয় বস্তু স্থাপন করতে হয়। সেই পরীক্ষণীয় বস্তু যে বল লাভ করে তার দারাই প্রাবল্য পরিমাপ করা হয়। সাধারণত পরীক্ষণীয় বস্তু হিসেবে একটি একক ভরের বা একক আধানের বস্তু নির্বাচিত করা হয়।

মহাকর্ষীয় ক্ষেত্রের কোনো বিন্দুতে একক ভরের <mark>একটি বস্তু স্থাপন করলে তার উ</mark>পর যে মহাকর্ষীয় বল প্রযুক্ত হয় তাকে ঐ বিন্দুর মহাকর্ষীয় ক্ষেত্র প্রাবল্য বলে।

মহাকর্ষীয় ক্ষেত্রের কোনো বিন্দুতে m ভরের কোনো বস্তু স্থাপন করলে যদি F বল লাভ করে, তবে ঐ বিন্দুতে একক ভরের বস্তু স্থাপন করলে তার ওপর ক্রিয়াশীল বল হবে $\frac{F}{m}$ । সুতরাং মহাকর্ষীয় ক্ষেত্র প্রাবল্য,

$$E_G = \frac{F}{m} \qquad \dots \tag{4.12}$$

আবার তড়িৎ ক্ষেত্রের কোনো বিন্দুতে একটি একক ধনাত্মক আধান স্থাপন করলে সেটি যে বল অনুভব করে তাকে ঐ বিন্দুর তড়িৎ প্রাবল্য বলা হয়।

তড়িং ক্ষেত্রের কোনো বিন্দুতে স্থাপিত +q আধান যদি F বল অনুভব করে তাহলে ঐ বিন্দুতে প্রাবল্যের মান হবে,

$$E = \frac{F}{a} \qquad \dots \tag{4.13}$$

যেহেতু বল একটি ভেক্টর রাশি, সুতরাং প্রাবল্যও একটি ভেক্টর রাশি।

স্বাভাবিকভাবেই একটি বলক্ষেত্রের বিভিন্ন বিন্দুতে প্রাবল্যের মান ও দিক বিভিন্ন হবে।

৪.১২। ঘূর্ণন গতি **Rotational Motion**

আমরা আমাদের দৈনন্দিন জীবনে এমন অনেক বস্তুর সাক্ষাৎ পাই যেগুলো ঘুরে। যেমন দরজা, বৈদ্যুতিক পাখা, লাটিম ইত্যাদি। পৃথিবীর সাথে দুটি ঘূর্ণন গতি জড়িত—একটি আহ্নিক গতি অপরটি সূর্যের চারপাশে বার্ষিক গতি। যখন একটি দৃঢ় বস্তুর প্রত্যেকটি কণা বৃত্তাকার পথে পরিভ্রমণ করে তখন ঐ বস্তুটি ঘূর্ণনগতি সম্পন্ন করে। কোনো বস্তু যখন ঘুরে তখন তার প্রত্যেকটি কণা কোনো না কোনো বিন্দুকে কেন্দ্র করে বৃত্তাকার পথে ঘুরে। ঘূর্ণনশীল কোনো বস্তুর প্রত্যেকটি কণার বৃত্তাকার গতির কেন্দ্রগুলো যে সরলরেখায় অবস্থিত তাকে ঘূর্ণন অক্ষ বলে। একটি ঘূর্ণায়মান দৃঢ় বস্তুর ক্ষেত্রে প্রত্যেকটি কণা থেকে ঘূর্ণন অক্ষের উপর অঙ্কিত প্রতিটি লম্ব একই সময়ে সমান কোণ অতিক্রম করে। কোনো নির্দিষ্ট অক্ষের সাপেক্ষে একটি দৃঢ় বস্তুর ঘূর্ণন গতি বর্ণনা করার জন্য আমরা যে স<mark>কল রাশি ব্যবহার</mark> করি সেগুলো হলো কৌণিক সরণ heta, কৌণিক বেগ ω এবং কৌণিক ত্বরণ α।

কৌণিক সরণ, θ

সংজ্ঞা: বৃত্তাকার পথে ঘূ<mark>র্ণায়মান</mark> কোনো কণা বা বস্তু নির্দিষ্ট সময় ব্যব<mark>ধানে</mark> বৃত্তের কেন্দ্রে যে কোণ উ<mark>ৎপন্ন ক</mark>রে তাকে কৌণিক সরণ বলে। ৪.৭ চিত্রে *🖯* কৌণিক দূরত্ব বা কৌণিক স<mark>রণ। heta</mark> পরিমাপের জন্য রেডিয়ান একক ব্যবহার করা হয়। একে ডিগ্রিতেও মাপা যেত<mark>ে পারে</mark>।

চিত্ৰ: 8.9

কৌণিক বেগ, ω

সংজ্ঞা : সময় ব্যবধান <mark>শূন্যের</mark> কাছাকাছি হলে কোনো বিন্দু বা অক্ষকে কে<mark>ন্দ্</mark>ৰ করে বৃত্তাকার পথে চলমান কো<mark>নো ব</mark>স্তুর সময়ের সাথে কৌণিক সরণের <mark>হারকে</mark> কৌণিক বেগ বলে।

ব্যাখ্যা : Δt সময়ে কোনো বস্তুর কৌণিক সরণ $\Delta \theta$ হলে কৌণিক বেগ,

$$\omega = \lim_{\Delta t \to 0} \frac{\Delta \theta}{\Delta t} = \frac{d\theta}{dt} \qquad ... \tag{4.14}$$

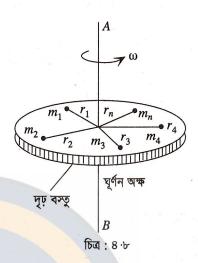
অর্থাৎ সময়ের সাপেক্ষে কৌণিক সরণের অন্তরককে কৌণিক বেগ বলা হয়।

কৌণিক ত্বরণ, α

সংজ্ঞা : সময় ব্যবধান শূন্যের কাছাকাছি হলে সময়ের সাথে বস্তুর কৌণিক বেগের পরিবর্তনের হারকে কৌণিক ত্বরণ বলে।

ব্যাখ্যা : Δt ব্যবধানে কোনো বস্তুর কৌণিক বেগের পরিবর্তন $\Delta \omega$ হলে, কৌণিক ত্বরণ,

$$\alpha = \lim_{\Delta t \to 0} \frac{\Delta \omega}{\Delta t} = \frac{d\omega}{dt} \qquad ... \tag{4.15}$$


অর্থাৎ সময়ের সাপেক্ষে কৌণিক বেগের অন্তরককে কৌণিক ত্বরণ বলা হয়। ঘূর্ণন গতি সংক্রান্ত এ রাশিগুলো তৃতীয় অধ্যায়ে বিস্তারিত আলোচনা করা হয়েছে।

৪.১৩। জড়তার ভ্রামক

Moment of Inertia

আমরা তৃতীয় অধ্যায়ে জড়তা নিয়ে আলোচনা করেছি। আমরা জানি, কোনো বস্তুর গতির তথা বেগের পরিবর্তনকে বাধা দেওয়ার প্রয়াসই হচ্ছে জড়তা। জড়তার পরিমাপ হচ্ছে ভর। কোনো একটি অক্ষের সাপেক্ষে ঘূর্ণনরত একটি বস্তুর ঘূর্ণন গতির পরিবর্তনকে বাধা দেওয়ার প্রয়াস হচ্ছে জড়তার ভ্রামক। জড়তার ভ্রামক ঘূর্ণন অক্ষ থেকে ভরের বন্টন ও দূরত্বের উপর নির্ভর করে।

ধরা যাক, M ভরের একটি দৃঢ় বস্তু AB অক্ষের চারদিকে ω সমকৌণিক বেগে ঘুরছে। এই ঘূর্ণন গতির জন্য বস্তুটি যে গতিশক্তি লাভ করে, তাকে ঘূর্ণন গতিশক্তি বলে। ধরা যাক, M ভরের বস্তুটি m_1 , m_2 , m_3 ইত্যাদি ভরের অসংখ্য বস্তুকণার সমষ্টি এবং AB অক্ষথেকে এদের লম্ব দূরত্ব যথাক্রমে r_1 , r_2 , r_3 ইত্যাদি (চিত্র: $8\cdot b\cdot$)। কোনো অক্ষ বা কোনো সরলরেখা থেকে কোনো বিন্দু বা কণার দূরত্ব বলতে ন্যূনতম দূরত্ব তথা লম্ব দূরত্বকে বোঝায়। যেহেতু কণাগুলো

বস্তুর সাথে দৃঢ়ভাবে আবদ্ধ তাই প্রত্যে<mark>কের কৌ</mark>ণিক বেগ ω হবে। কিন্তু ঘূর্ণন অক্ষ থেকে <mark>এদের</mark> দূরত্ব সমান নয় বলে এদের বৈথিক বেগ সমান হবে না।

এখন, m_1 বস্তুকণার রৈখিক বেগ, $v_1=\omega r_1$

অতএব, এর গতিশক্তি $E_1 = \frac{1}{2} m_1 v_1^2 = \frac{1}{2} m_1 \omega^2 r_1^2$

আবার, m_2 বস্তুকণার রৈখিক <mark>বেগ $v_2=\omega r_2$ </mark>

সুতরাং এর গতিশক্তি $E_2 = \frac{1}{2} m_2 v_2^2 = \frac{1}{2} m_2 \omega^2 r_2^2$

এভাবে আমরা প্রত্যেকটি বস্তুকণা<mark>র গতিশ</mark>ক্তি নির্ণয় করতে পারি। এখন সমগ্র বস্তু<mark>টির গতি</mark>শক্তি হবে সকল বস্তুকণার গতিশক্তির সমষ্টির সমান।

অতএব, সমগ্র বস্তুর গতিশক্তি,

$$E = E_1 + E_2 + E_3 + \dots$$

$$E = \frac{1}{2} m_1^2 \omega^2 r_1^2 + \frac{1}{2} m_2 \omega^2 r_2^2 + \frac{1}{2} m_3 \omega^2 r_3^2 + \dots \dots \dots$$

$$= \frac{1}{2} \omega^2 \left[m_1 r_1^2 + m_2 r_2^2 + m_3 r_3^2 + \dots \dots \right]$$

$$= \frac{1}{2} \omega^2 \left(\sum m_i r_i^2 \right)$$

বা,
$$E = \frac{1}{2}I\omega^2$$
 ... (4.16)

এখানে,
$$I = \sum m_1 r_1^2 = m_1 r_1^2 + m_2 r_2^2 + m_3 r_3^2 + \dots$$
 (4.17)

এই I ই হচ্ছে জড়তার ভ্রামক।

সংজ্ঞা : কোনো নির্দিষ্ট সরলরেখা থেকে কোনো দৃঢ় বস্তুর প্রত্যেকটি কণার লম্ব দূরত্ত্বের বর্গ এবং এদের প্রত্যেকের ভরের শুণফলের সমষ্টিকে ঐ সরলরেখার সাপেক্ষে ঐ বস্তুর জড়তার ভ্রামক বলে।

কিন্তু কোনো বস্তুর ভর নিরবচ্ছিন্নভাবে সমগ্র বস্তুর মধ্যে বণ্টিত থাকে। সুতরাং ঘূর্ণন অক্ষ থেকে r দূরত্বে ক্ষুদ্রাতিক্ষুদ্র ভর dm হলে নিরবচ্ছিন্ন বস্তুর ক্ষেত্রে (4.17) সমীকরণ দাঁড়ায়,

$$I = \int r^2 dm \qquad \dots \tag{4.18}$$

জড়তার ভামকের মাত্রা হচ্ছে ভর imes (দূরত্ব) 2 এর মাত্রা। অর্থাৎ ML 2 এবং একক হচ্ছে kg m 2 ।

কোনো অক্ষের সাপেক্ষে কোনো বস্তুর জড়তার ভ্রামক $50~{
m kg}~{
m m}^2$ বলতে বোঝায় ঐ বস্তুর প্রত্যেকটি কণার ভর এবং ঐ অক্ষ থেকে তাদের প্রত্যেকের লম্ব দূরত্বের বর্গের গুণফলের সমষ্টি $50~{
m kg}~{
m m}^2$ ।

আবার (4.16) সমীকরণ থেকে আমরা পাই,

 $\omega = 1$ একক হলে I = 2E

অর্থাৎ কোনো নির্দিষ্ট অক্ষ বরাবর একক সমকৌণিক বেগে আবর্তনরত কোনো দৃঢ় বস্তুর জড়তার ভ্রামক, সংখ্যাগতভাবে এর গতিশক্তির দিগুণ।

m ভরের কোনো বস্তু যদি অনুভূমিকভাবে গড়াতে থাকে তার মোট গতিশক্তি $K=rac{1}{2} \ mv^2 + rac{1}{2} I\omega^2$ ।

এখানে, v= বস্তুটির রৈখিক বেগ, $\omega=$ বস্তুটির কৌণিক বেগ এবং I= বস্তুটির আপন অক্ষের সাপেক্ষে জড়তার ভ্রামক।

চক্রগতির ব্যাসার্ধ (Radius of Gyration)

সংজ্ঞা : কোনো দৃঢ় বস্তুর সমগ্<mark>র ভর যদি এ</mark>কটি নির্দিষ্ট বিন্দুতে কেন্দ্রীভূত করা যায় যাতে করে একটি নির্দিষ্ট অক্ষের সাপেক্ষে ঐ কেন্দ্রীভূত বস্তু<mark>কণার</mark> জড়তার ভ্রামক, ঐ নির্দিষ্ট অক্ষের সাপেক্ষে সমগ্র দৃঢ় বস্তুর জড়তার ভ্রামকের সমান হয়, তাহলে ঐ নির্দিষ্ট অ<mark>ক্ষ থে</mark>কে কেন্দ্রীভূত বস্তুকণার লম্ব দূরত্বকে চক্রগতির ব্যাসার্ধ বলে।

ব্যাখ্যা: ধরা যাক, একটি বস্তুর ভর M এবং কোনো অক্ষের সাপেক্ষে তার জড়তার ভ্রামক I। এখন কল্পনা করা যাক, ঐ বস্তুর ভর M সমগ্র বস্তুর মধ্যে বণ্টিত না থেকে একটি বিন্দুতে কেন্দ্রীভূত আছে। ঘূর্ণন অক্ষ্ণ থেকে ঐ কেন্দ্রীভূত বস্তুর লম্ব দূরত্ব যতো হলে ঐ অক্ষের সাপেক্ষে পুঞ্জিভূত বস্তুর জড়তার ভ্রামক সমগ্র বস্তুর জড়তার ভ্রামক I এর সমান হবে, সেই দূরত্বকে চক্রগতির ব্যাসার্ধ K বলে।

$$\therefore I = MK^2$$

বা,
$$K = \sqrt{\frac{I}{M}}$$
 ... (4.19)

মাত্রা ও একক: চক্রগতির ব্যাসার্ধের মাত্রা ও একক যথাক্রমে দৈর্ঘ্যের মাত্রা ও এককের অনুরূপ। সূতরাং এর মাত্রা L এবং এসআই একক মিটার (m)।

তাৎপর্য: কোনো অক্ষের সাপেক্ষে <mark>একটি বস্তুর চক্রগতির ব্যাসার্ধ 0.5 m</mark> বলতে বোঝায় ঐ অক্ষ থেকে 0.5 m দূরে একটি বিন্দুতে বস্তুটির সমগ্র ভর পুঞ্জীভূত আছে ধরে জড়তার ভ্রামক হিসাব করলেই সমগ্র বস্তুটির জড়তার ভ্রামক পাওয়া যাবে।

৪.১৪। জড়তার ভ্রামক সংক্রান্ত দুটি উপপাদ্য

Two Theorem Regarding Moment of Inertia

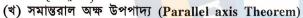
জড়তার ভ্রামক সংক্রান্ত দুটি উপপাদ্যের সাহায্যে কোনো বস্তুর কোনো একটি বিশেষ অক্ষের সাপেক্ষে জড়তার ভ্রামকের মান বের করা যায়। উপপাদ্য দুটি হলো—(ক) লম্ব অক্ষ উপপাদ্য এবং (খ) সমান্তরাল অক্ষ উপপাদ্য।

(ক) লম্ব অক্ষ উপপাদ্য (Perpendicular axis Theorem)

বিবৃতি : কোনো সমতল পাতের তলে অবস্থিত দুটি পরস্পর লম্ব অক্ষের সাপেক্ষে ঐ পাতের জড়তার ভ্রামকদ্বয়ের সমষ্টি হবে ঐ দুই অক্ষের ছেদবিন্দু দিয়ে এবং পাতের অভিলম্বভাবে গমনকারী অক্ষের সাপেক্ষে পাতটির জড়তার ভ্রামকের সমান।

ব্যাখ্যা : কোনো সমতল পাতের তলে অবস্থিত দুটি পরম্পর লম্ব অক্ষ OX ও OY (চিত্র ৪.৯) এর সাপেক্ষে যদি জড়তার ভ্রামক I_x ও I_y হয় তবে তাদের সমষ্টি (I_x+I_y) হবে ঐ দুই অক্ষের ছেদবিন্দু O দিয়ে এবং পাতের তলের অভিলম্বভাবে গমনকারী অক্ষ OZ সাপেক্ষে পাতের জড়তা ভ্রামক I_z -এর সমান।

(4.20)

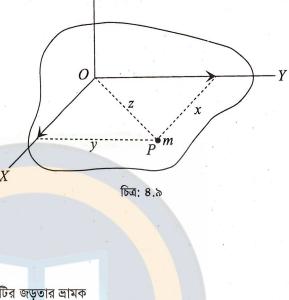

অর্থাৎ
$$I_z = I_x + I_y$$

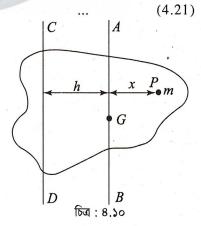
প্রমাণ : মনে করি, একটা পাতলা সমতল পাতের ওপর লম্বভাবে অবস্থিত OX এবং OY-অক্ষদ্বয় O বিন্দুতে ছেদ করে। এ ছেদবিন্দু O দিয়ে অঙ্কিত OZ অক্ষটি সমতল পাতের ওপর লম্ব (চিত্র : $8 \cdot 8$)। মনে করি, এই পাতের ওপর P বিন্দুতে অবস্থিত একটি কণার ভর m। OY, OX এবং OZ-অক্ষ থেকে P বিন্দুর লম্ব দূরত্ব যথাক্রমে X, Y, Z।

$$\therefore z^2 = x^2 + y^2$$

এখন ধরা যাক, পাতটি $m_1, m_2 \dots m_i \dots$ ইত্যাদি ভরের অসংখ্য কণার সমন্বয়ে গঠিত। OY অক্ষ থেকে এ কণাগুলোর লম্ব দূরত্ব যথাক্রমে $x_1, x_2 \dots x_i \dots OX$ - অক্ষ থেকে এদের লম্ব দূরত্ব যথাক্রমে $y_1, y_2 \dots y_i \dots$ এবং OZ- অক্ষ থেকে এদের লম্ব দূরত্ব যথাক্রমে $z_1, z_2, \dots z_i \dots$ ইত্যাদি। সুতরাং OZ- অক্ষের সাপেক্ষে পাতটির জড়তার ভ্রামক,

$$I_z = \sum m_i z_i^2$$
 $= \sum m_i (x_i^2 + y_i^2)$
 $= \sum m_i x_i^2 + \sum m_i y_i^2$
কিন্তু $\sum m_i x_i^2 = I_y$ হচ্ছে OY -অক্ষের সাপেক্ষে পাতটির জড়তার ভ্রামক এবং $\sum m_i y_i^2 = I_x$ হচ্ছে OX -অক্ষের সাপেক্ষে পাতটির জড়তার ভ্রামক। $\therefore I_z = I_x + I_y$


বিবৃতি: যেকোনো অক্ষের সাপেক্ষে কোনো বস্তুর জড়তার ভ্রামক হবে ঐ অক্ষের সমান্তরাল ও বস্তুর ভরকেন্দ্রের মধ্য দিয়ে গমনকারী অক্ষের সাপেক্ষে জড়তার ভ্রামক এবং ঐ বস্তুর ভর ও দুই অক্ষের মধ্যবর্তী লম্ব দূরত্বের বর্গের গুণফলের সমষ্টির সমান।


ব্যাখ্যা \imath মনে করা যাক, M ভরের কোনো বস্তুর ভরকেন্দ্র G এর মধ্য দিয়ে অতিক্রান্ত AB অক্ষের সাপেক্ষে জড়তার দ্রামক I_G । তাহলে এই অক্ষ থেকে h দূরত্বে এবং এই অক্ষের সমান্তরাল কোনো অক্ষ CD এর সাপেক্ষে ঐ বস্তুর জড়তার দ্রামক হবে (চিত্র 8.50)

$$I = I_G + Mh^2$$

প্রমাণ: মনে করা যাক, M ভরের একটি বস্তুর ভরকেন্দ্র G এর মধ্য দিয়ে অতিক্রান্ত অক্ষ AB এবং এই অক্ষ থেকে h দূরত্বে এবং এই অক্ষের সমান্তরাল অক্ষ CD। ধরা যাক, P বিন্দুতে অবস্থিত একটি কণার ভর m।

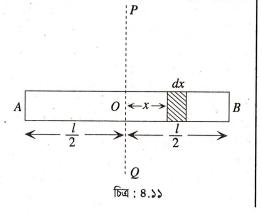
AB অক্ষ থেকে এই কণাটির লম্ব দূরত্ব x হলে CD অক্ষ থেকে এর লম্ব দূরত্ব হবে h+x। এখন ধরা যাক, বস্তুটি $m_1,m_2\dots m_i\dots$ ইত্যাদি ভরের অসংখ্য কণার সমন্বয়ে গঠিত। AB অক্ষ থেকে এই কণাগুলোর লম্ব দূরত্ব যথাক্রমে $x_1,\ x_2\dots x_i$ ইত্যাদি হলে CD অক্ষ থেকে এদের লম্ব দূরত্ব হবে যথাক্রমে

কয়েকটি বস্থুর জড়তার ভ্রামক ও চক্রগতির ব্যাসার্ধ

	ব্যু	জড়তার ভ্রামক	চক্রগতির ব্যাসার্ধ
۶	M ভরের ও l দৈর্ঘ্যে একটি সরু ও সুষম দণ্ডের দৈর্ঘ্যের মধ্যবিন্দু দিয়ে এবং দৈর্ঘ্যের লম্বভাবে গমনকারী অক্ষের সাপেক্ষে দণ্ডের জড়তার ভ্রামক।		$\frac{l}{\sqrt{12}}$
ર	M ভরের ও l দৈর্ঘ্যের <mark>একটি</mark> সরু ও সুষম দণ্ডের একপ্রান্ত দিয়ে এবং দৈর্ঘ্যের লম্বভাবে <mark>গমনকা</mark> রী অক্ষের সাপেক্ষে দণ্ডের জড়তার ভ্রামক।	$\frac{Ml^2}{3}$	$\frac{l}{\sqrt{3}}$
٥	M ভরের ও r ব্যাসার্ধে <mark>র পা</mark> তলা বৃত্তাকার চাকতির কেন্দ্র দিয়ে পৃঠের অভিলম্বভাবে গমনকা <mark>রী অক্ষে</mark> র সাপেক্ষে চাকতির জড়তার ভ্রামক।	$\frac{1}{2}Mr^2$	$\frac{r}{\sqrt{2}}$
8	M ভরের ও r ব্যাসা <mark>র্ধের এ</mark> কটি নিরেট সিলিভারের নিজ অক্ষের সাপেক্ষে সিলিভারের <mark>জড়তার</mark> ভ্রামক।	$\frac{1}{2}Mr^2$	$\frac{r}{\sqrt{2}}$

সম্প্রসারিত কর্মকাণ্ড

কয়েকটি বিশেষ ক্ষেত্রে জড়তার ভ্রামক ও চক্রগতির ব্যাসার্ধ নির্ণয়


১. একটি সরু ও সুষম দণ্ডের দৈর্ঘ্যের মধ্যবিন্দু দিয়ে এবং দৈর্ঘ্যের লম্বভাবে গমনকারী অক্ষের সাপেক্ষে দণ্ডের জড়তার ভ্রামক এবং চক্রগতির ব্যাসার্ধ (Moment of Inertia and Radius of Gyration of a thin uniform rod about an axis through its middle point and perpendicular to its length):

ধরা যাক, AB একটি সরু ও সুষম দণ্ড (চিত্র-৪.১১)। এর দৈর্ঘ্যের মধ্যবিন্দু O দিয়ে এবং দৈর্ঘ্যের লম্বভাবে গমনকারী PQ অক্ষের সাপেক্ষে ঐ দণ্ডের জড়তার ভ্রামক নির্ণয় করতে হবে। ধরা যাক, দণ্ডের দৈর্ঘ্য I এবং ভর M।

 \therefore দণ্ডের প্রতি একক দৈর্ঘ্যের ভর $\lambda = \frac{M}{L}$

সুতরাং অক্ষ থেকে x দূরত্বে dx দৈর্ঘ্যের একটি ক্ষুদ্রাতিক্ষুদ্র অংশের ভর $dm=\lambda dx$

এখন PQ অক্ষের সাপেক্ষে dx দৈর্ঘ্যের অংশের জড়তার ভ্রামক,

$$dI = x^{2}dm = x^{2} \left(\frac{M}{l}\right) dx = \frac{M}{l} x^{2} dx$$

এখন এই সমীকরণের ডান পাশকে $x=-rac{l}{2}$ থেকে $x=rac{l}{2}$ সীমার মধ্যে যোগজীকরণ করলে সমগ্র দণ্ডের জড়তার ভামক I পাওয়া যায়,

$$I = \int_{-l/2}^{l/2} \frac{M}{l} x^2 dx$$
$$= \frac{M}{l} \int_{-l/2}^{l/2} x^2 dx$$

$$= \frac{M}{3l} \left[x^3 \right]_{-l/2}^{l/2} = \frac{M}{3l} \left[\frac{l^3}{8} + \frac{l^3}{8} \right]$$

$$\therefore I = \frac{Ml^2}{12}$$

ধরি চক্রগতির ব্যাসার্ধ, *K*

$$\therefore MK^2 = \frac{Ml^2}{12}$$

$$\therefore K = \frac{l}{\sqrt{12}}$$

(4.23)

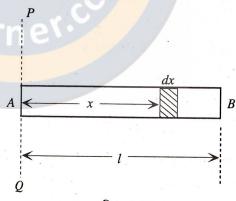
(4.22)

২. একটি সরু ও সুষম দণ্ডের <mark>এক প্রান্ত দিয়ে এবং দৈর্ঘ্যের লম্বভাবে গমনকারী অক্ষের সাপেক্ষে দণ্ডের জড়তার</mark> স্থামক এবং চক্রগতির ব্যাসার্ধ (Moment of Inertia and Radius of Gyration of a thin uniform rod about an axis passing through the end and perpendicular to its length):

ধরা যাক, AB একটি সরু ও সুষমা<mark>দণ্ড (চিত্র:</mark> ৪.১২)। এর এক প্রান্ত A দিয়ে এবং দৈর্ঘ্যের লম্বভাবে গমনকারী PQ অক্ষের সাপেক্ষে ঐ দণ্ডের জড়তার ভ্রামক <mark>নির্ণয় করতে</mark> হবে।

ধরা যাক, দণ্ডের দৈর্ঘ্য 1 এবং ভর M।

$$\therefore$$
 দণ্ডের প্রতি একক দৈর্ঘ্যের ভর, $\lambda=rac{M}{l}$


সুতরাং অক্ষ থেকে x দূরত্বে dx দৈর্ঘ্যের একটি ক্ষুদ্রাতিক্ষুদ্র অংশের ভর, $dm=\lambda\,dx$

বা,
$$dm = \left(\frac{M}{l}\right) dx$$

এখন PQ অক্ষের সাপেক্ষে dx দৈর্ঘ্যের অংশের জড়তার ভ্রামক,

$$dI = x^2 dm = x^2 \left(\frac{M}{l}\right) dx = \frac{M}{l} x^2 dx$$

এখন এই সমীকরণের ডান পাশকে x=0 থেকে x=l সীমার মধ্যে যোগজীকরণ করলে সমগ্র দণ্ডের জড়তার ভ্রামক I পাওয়া যায়,

চিত্ৰ : ৪.১২

$$I = \frac{M}{l} \int_{0}^{l} x^{2} dx = \frac{M}{l} \int_{0}^{l} x^{2} dx$$

$$= \frac{M}{3l} \left[x^{3} \right]_{0}^{l} = \frac{M}{3l} \left[l^{3} - 0 \right]$$

$$\therefore I = \frac{1}{3} M l^{2} \qquad ... \qquad (4.24)$$

চক্রগতির ব্যাসার্ধ K হলে,

$$MK^2 = \frac{1}{3}Ml^2$$

$$K = \frac{l}{\sqrt{3}} \qquad \dots \tag{4.25}$$

৩. পাতলা বৃত্তাকার চাকতির কেন্দ্র পিরে পৃষ্ঠের অভিলম্বভাবে গমনকারী অক্ষের সাপেক্ষে চাকতির জড়তার আমক ও চক্রগতির ব্যাসার্থ (Moment of Inertia and Radius of Gyration of a circular disc about an axis perpendicular to its plane passing through the centre):

ধরা যাক, BCD একটি বৃত্তা<mark>কার চা</mark>কতি। এর ভরকেন্দ্র O এবং পৃষ্ঠের <mark>সাথে লম্বভা</mark>বে গমনকারী PQ অক্ষের সাপেক্ষে ঐ চাকতির জড়তার ভ্রামক নি<mark>র্ণয় কর</mark>তে হবে (চিত্র : ৪.১৩)।

ধরা যাক, চাকতিটির ভর M এবং ব্যাসার্ধ r। সুতরাং চাকতির ক্ষেত্রফল $A=\pi r^2$ ।

∴ চাকতির প্রতি একক ক্ষেত্রফলের ভর,

$$\sigma = \frac{M}{A} = \frac{M}{\pi r^2} \, \mathsf{I}$$

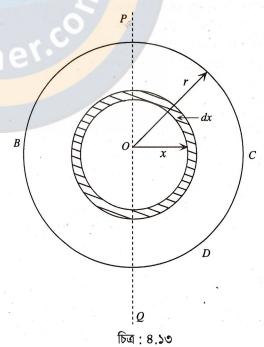
এখন অক্ষ থেকে x দূরত্বে dx প্রস্থের একটি সরু বলয় কল্পনা করা যাক।

এই বলয়ের ক্ষেত্রফল

dA = বলয়ের পরিধি \times বলয়ের প্রস্থ

 $=2\pi x dx$

সুতরাং এই ক্ষুদ্রাতিক্ষুদ্র অংশের ভর,


$$dm = \sigma dA$$

বা, $dm = \frac{M}{\pi r^2}$. $2\pi x dx$
বা, $dm = \left(\frac{2M}{r^2}\right)x dx$

এখন PQ অক্ষের সাপেক্ষে এই dx প্রস্থের সরুবলয়ের জড়তার দ্রামক,

$$dI = x^{2}dm = x^{2} \left(\frac{2M}{r^{2}}\right)x \ dx$$

$$\exists 1, \ dI = \left(\frac{2M}{r^{2}}\right)x^{3}dx$$

এখন এ সমীকরণের ডান পাশকে x = 0 থেকে x = r সীমার মধ্যে যোগজীকরণ করলে সমগ্র পাতের জডতার ভ্রামক I পাওয়া যায়.

$$I = \int_{0}^{r} \left(\frac{2M}{r^{2}}\right) x^{3} dx = \frac{2M}{r^{2}} \int_{0}^{r} x^{3} dx$$

$$= \frac{2M}{4r^{2}} \left[x^{4}\right]_{0}^{r} = \frac{M}{2r^{2}} \left[r^{4} - 0\right]$$

$$\therefore I = \frac{1}{2}Mr^{2} \qquad ... \qquad (4.26)$$

চক্রগতির ব্যাসার্ধ K হলে.

$$MK^2 = \frac{1}{2} Mr^2$$

$$\therefore K = \frac{r}{\sqrt{2}} \qquad \dots \tag{4.27}$$

8. নিজ অক্ষের সাপেক্ষে একটি নিরেট সিলিভারের <mark>জড়তার আমক ও চক্র</mark>গতির ব্যাসার্ধ (Moment of Inertia and Radius of Gyration of a solid cylinder about its own axis):

ধরা যাক, C একটি নিরেট সিলিভার। এর নিজ অক্ষ PQ এর সাপেক্ষে <mark>তার জড়তা</mark>র ভামক নির্ণয় করতে হবে (চিত্র ৪.১৪)।

ধরা যাক, সিলিন্ডারের ভর M, দৈর্ঘ্য l এবং ব্যাসার্ধ r। সুতরাং সিলিন্ডারের আয়তন,

$$V = \pi r^2 l$$

সিলিভারের প্রতি একক <mark>আয়তনের ভর তথা ঘনত্ব</mark>,

$$\rho = \frac{M}{V} = \frac{M}{\pi r^2 l}$$

PQ অক্ষের চারদিকে x ব্যাসার্<mark>ধের এবং dx পুরুত্ত্বের</mark> একটি ফাঁপা সমাক্ষীয় চোঙ বিবেচনা করা <mark>যাক।</mark>

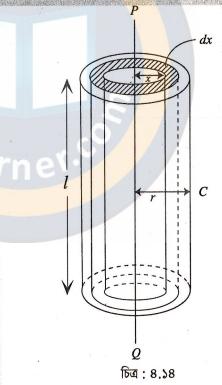
এখন এই চোঙের

প্রস্থচ্ছেদের নিরেট অংশের ক্ষেত্রফল,

$$dA = পরিধি \times পুরুত্ত্ব$$

$$= 2\pi x \times dx$$

নিরেট অংশের আয়তন, dV= প্রস্তুচ্ছেদের ক্ষেত্রফল imes দৈর্ঘ্য


$$= 2\pi x dx \times l$$

নিরেট অংশের ভর, dm = আয়তন imes ঘনত্ত্ব

$$=2\pi lxdx\times\frac{M}{\pi r^2l}$$

$$\therefore dm = \left(\frac{2M}{r^2}\right) x dx$$

এখন PQ অক্ষের সাপেক্ষে এই dx পুরুত্বের চোঙের জড়তার ভ্রামক,

$$dI = x^2 dm$$

$$\exists i, dI = \left(\frac{2M}{r^2}\right) x^3 dx$$

এখন এই সমীকরণের ডান পাশকে x=0 থেকে x=r সীমার মধ্যে যোগজীকরণ করলে সমগ্র সিলিন্ডারের জড়তার দ্রামক I পাওয়া যায়,

$$I = \int_{0}^{r} \left(\frac{2M}{r^{2}}\right) x^{3} dx = \frac{2M}{r^{2}} \int_{0}^{r} x^{3} dx$$

$$= \frac{2M}{4r^{2}} \left[x^{4} \right]_{0}^{r} = \frac{M}{2r^{2}} \left[r^{4} - 0 \right]$$

$$\therefore I = \frac{1}{2} M r^{2} \qquad \dots \qquad (4.28)$$

চক্রগতির ব্যাসার্ধ K হলে,

$$MK^2 = \frac{1}{2}Mr^2$$

$$\therefore K = \frac{r}{\sqrt{2}} \qquad \dots \tag{4.29}$$

৫. পাতলা ও সুষম আয়তা<mark>কার পা</mark>তের ভরকেন্দ্র দিয়ে এবং পৃষ্ঠের <mark>অভিনম্বভাবে গমনকারী অক্ষের সাপেক্ষে জড়তার আমক ও চক্রগতির ব্যাসার্ধ (Moment of inertia and Radius of Gyration of a thin rod angular lamina about an axis through its centre of mass and perpendicular to its plane): ধরা যাক, একটি পাতলা ও সুষম আয়তাকার পাত ABCD (চিত্র: ৪.১৫)।</mark>

PQ অক্ষটি আয়তাকা<mark>র পা</mark>তটির সাথে অভিলম্বভাবে এর ভরকেন্দ্র 🕜 দিয়ে গি<mark>য়েছে। PQ</mark> অক্ষের সাপেক্ষে পাতটির জড়তার ভ্রামক নির্ণয় করতে হবে ।

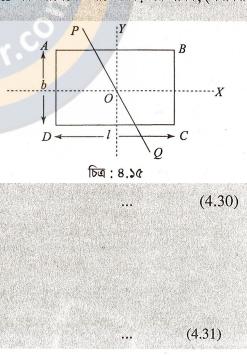
মনে করি, পা<mark>তটির</mark> দৈর্ঘ্য, প্রস্থ ও ভর যথাক্রমে *l, b* ও M।

AB বাহুর সমান্তরাল ও O বিন্দু দিয়ে অতিক্রান্ত অক্ষ OX-এর সাপেক্ষে পাতের জড়তার ভ্রামক, (সমীকরণ 4.22)

$$I_x = \frac{Mb^2}{12}$$

অনুরূপভাবে, AD বাহুর স<mark>মান্তরাল ও O</mark> বিন্দু দিয়ে অতিক্রান্ত অক্ষ OY এর সাপেক্ষেপাতের জড়তার ভ্রামক,

$$I_y = \frac{Ml^2}{12}$$

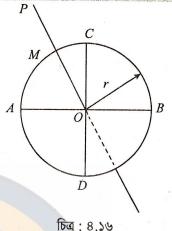

এখন লম্ব অক্ষ উপপাদ্য অনুযায়ী PQ অক্ষের সাপেক্ষে আয়তাকার পাতের জড়তার ভ্রামক I হবে,

$$I = I_x + I_y$$

আবার, $I = MK^2$

$$41, K^2 = \frac{l^2 + b^2}{12}$$

বা,
$$K = \sqrt{\frac{l^2 + b^2}{12}}$$


পদার্থ-১ম (হাসান) -১৬(খ)

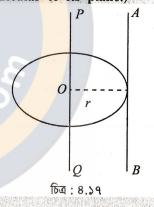
৬. একটি পাতলা বুত্তাকার চাকতির যেকোনো ব্যাসের সাপেক্ষে জড়তার ভ্রামক (Moment of Inertia of a circular disc about any of its diameter):

ধরা যাক, ACBD একটি পাতলা সুষম চাকতি (চিত্র 8.3৬)। এর ভর M এবং ব্যাসার্ধ r। এটি AB ব্যাস দিয়ে অতিক্রান্ত অক্ষের সাপেক্ষে ঘূর্ণায়মান। এই অক্ষের সাপেক্ষে চাকতিটির জড়তার ভ্রামক নির্ণয় করতে হবে। ধরা যাক, এই জড়তার ভ্রামক =I. তাহলে AB-এর লম্ব ব্যাস CD-এর সাপেক্ষেও চাকতিটির জড়তার ভ্রামক =I. লম্ব অক্ষ উপপাদ্য অনুসারে উপরিউক্ত দুই জড়তার ভ্রামকের সমষ্টি হবে উক্ত দুই লম্ব ব্যাসের ছেদবিন্দু O তথা চাকতির কেন্দ্রবিন্দু দিয়ে ও চাকতির তলের অভিলম্বভাবে অতিক্রান্ত অক্ষ PQ-এর সাপেক্ষে উক্ত চাকতির জড়তার ভ্রামকের সমান। অর্থাৎ PQ-এর সাপেক্ষে চাকতিটির জড়তার ভ্রামক I_{PO} হবে,

$$I_{PQ} = I + I$$
 বা, $I = \frac{1}{2} I_{PQ}$

কিন্তু,
$$I_{PQ} = \frac{1}{2}Mr^2$$
 : $I = \frac{1}{4}Mr^2$.

৭. পাতলা বৃত্তাকার চাকতির পু<mark>ষ্ঠের</mark> অভিলম্বভাবে গমনকারী স্পর্শকের সাপেক্ষে চাকতির জড়তার ভ্রামক (Moment of Inertia of a cir<mark>cula</mark>r disc about a tangent perpendicula<mark>r to</mark> its plane.)


মনে করি, M ভরবিশিষ্ট এবং r ব্যাসার্ধের একটি বৃত্তাকার চাকতির পৃষ্ঠের অভিলম্বভাবে গমনকারী AB একটি স্পর্শক (চিত্র ৪.১৭)।

চাকতির ভরকেন্দ্র O বিন্দু দিয়ে <mark>অতিক্রান্ত অ</mark>ক্ষ PQ ঐ পাতের স্পর্শক AB- এর সাথে সমান্তরাল। এখন সমান্তরা<mark>ল অ</mark>ক্ষ উপপাদ্য অনুসারে স্পর্শক AB এর সাপেক্ষে পাতটির জড়তার ভ্রামক I হবে.

$$I = I_{PQ} + Mr^2$$

আমরা জানি, M ভরবিশিষ্ট এবং r ব্যাসার্ধের একটি বৃত্তাকার চাকতির পৃষ্ঠের অভিলম্বভাবে চাকতির ভরকেন্দ্র দিয়ে গমনকারী অক্ষের সাপেক্ষে চাকতির জড়তার ভ্রামক হচ্ছে $\frac{Mr^2}{2}$ (সমীকরণ 4.26)।

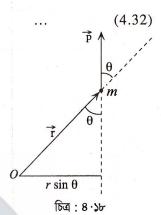
সুতরাং
$$I_{PQ}=\frac{Mr^2}{2}$$
 : $I=\frac{Mr^2}{2}+Mr^2$ বা, $I=\frac{3}{2}Mr^2$

৪.১৫। কৌণিক ভরবেগ

Angular Momentum

চলন গতির ক্ষেত্রে আমরা দেখেছি m ভরের কোনো বস্তু \overrightarrow{v} বেগে গতিশীল হলে তার ভরবেগ তথা রৈখিক ভরবেগ $\overrightarrow{p}=m\overrightarrow{v}$, একটি গুরুত্বপূর্ণ রাশি। ঘূর্ণনগতির ক্ষেত্রে ভরবেগের অনুরূপ রাশি হচ্ছে কৌণিক ভরবেগ। কোনো বিন্দুর সাপেক্ষে ভরবেগের ভ্রামকই হচ্ছে কণাটির কৌণিক ভরবেগ।

সংজ্ঞা : কোনো বিন্দু বা অক্ষকে কেন্দ্র করে ঘূর্ণায়মান কোনো কণার ব্যাসার্ধ ভেক্টর এবং ভরবেগের ভেক্টর গুণফলকে ঐ বিন্দু বা অক্ষের সাপেক্ষে কণাটির কৌণিক ভরবেগ বলে। ব্যাখ্যা : ঘূর্ণন কেন্দ্রের সাপেক্ষে কোনো কণার ব্যাসার্ধ ভেক্টর বা অবস্থান ভেক্টর \overrightarrow{r} এবং ঐ কণার ভরবেগ \overrightarrow{p} হলে, ঐ বিন্দুর সাপেক্ষে কণাটির কৌণিক ভরবেগ হচ্ছে,


$$\overrightarrow{L} = \overrightarrow{r} \times \overrightarrow{p}$$

ঘূর্ণন কেন্দ্র থেকে r দূরত্বে কোনো কণার ভরবেগ p হলে ঐ বিন্দুর সাপেক্ষে কণাটির কৌণিক ভরবেগের মান L হবে

$$L = rp \sin \theta$$

বা,
$$L = pr \sin \theta$$

এখানে θ হচ্ছে \overrightarrow{r} এবং \overrightarrow{p} এর অন্তর্ভুক্ত কোণ। কিন্তু $r \sin \theta$ হচ্ছে ঘূর্ণন কেন্দ্র থেকে ভরবেগের ক্রিয়া রেখার লম্ব দূরত্ব (চিত্র : $8 \cdot 3 \cdot b$)। সূতরাং কোনো কণার ভরবেগ এবং ঘূর্ণন কেন্দ্র থেকে ভরবেগের ক্রিয়ারেখার লম্ব দূরত্বের শুণফলই হচ্ছে ঐ বিন্দুর সাপেক্ষে কণাটির কৌণিক ভরবেগের মান।

দিক : কৌণিক ভরবেগ একটি ভেক্টর রাশি। এর দিক $\overrightarrow{r} \times \overrightarrow{p}$ এর দিকে।

একটি ডানহাতি স্কুকে \overrightarrow{r} ও \overrightarrow{p} এর সমতলে লম্বভাবে স্থাপন করে \overrightarrow{r} থেকে \overrightarrow{p} এর দিকে ক্ষুদ্রতর কোণে ঘুরালে যে দিকে অগ্রসর হয় সেদিকে।

মাত্রা ও একক : কৌণিক ভরবেগের মাত্রা হচ্ছে ভরবেগ imes দূরত্বের মাত্রা <mark>অর্থাৎ ML^2T^{-1} এবং এর একক হচ্ছে $\log m^2 \, \mathrm{s}^{-1}$ ।</mark>

তাৎপর্য: কোনো বস্তুর কৌণিক ভরবেগ $30~{
m kg}~{
m m}^2~{
m s}^{-1}$ বলতে বোঝায় ঐ বস্তুর কৌণিক ভরবেগ, $1~{
m kg}~{
m m}^2$ জড়তার ভ্রামকবিশিষ্ট কোনো বস্তুর কৌণিক বেগ $30~{
m rad}~{
m s}^{-1}$ হলে যে কৌণিক ভরবেগ হবে তার সমান।

বি: দ্র: কোনো অক্ষের সাপেক্ষে ঘূর্ণায়মান দৃঢ় বস্তুর কৌণিক ভরবেগ হয় ঐ ঘূর্<mark>ণন অক্ষে</mark>র সাপেক্ষে।

কৌণিক ভরবেগ ও কৌণিক বেগের সম্পর্ক : $L = I\omega$

ধরা যাক, একটি বস্তু কোনো এ<mark>কটি অক্ষের সাপেক্ষে ω সমকৌণিক দ্রুতিতে</mark> ঘূর্ণায়মান। উক্ত বস্তুর যেকোনো একটি কণার ভর m_1 , ঘূর্ণন অক্ষ থেকে কণাটির লম্ব দূরত্ব r_1 এবং কণাটির বেগ v_1 হলে

ঘূর্ণন অক্ষের সাপেক্ষে কণাটির কৌণিক ভরবেগ,
$$p_1r_1=m_1\nu_1r_1$$

$$= m_1 \omega r_1^2 \quad [\because v_1 = \omega r_1 \]$$
$$= \omega m_1 r_1^2$$

অনুরূপে ঘূর্ণন অক্ষের সাপেক্ষে m_2 ভরের কৌণিক ভরবেগ $=\omega m_2 r_2^2$ । এভাবে প্রতিটি বস্তুকণার জন্য কৌণিক ভরবেগ বের করে তাদের সমষ্টি নিলে সম্পূর্ণ বস্তুটির কৌণিক ভরবেগ L পাওয়া যাবে।

এখানে I হলো ঘূর্ণন অক্ষের সাপেক্ষে বস্তুটির জড়তার ভ্রামক
∴ কৌণিক ভরবেগ = জড়তার ভ্রামক × কৌণিক বেগ

৪.১৬। টর্ক

Torque

চলন গতিতে রৈখিক ত্রণের সাথে যেমন বল সংশ্লিষ্ট ঘূর্ণন গতিতে তেমনি কৌণিক ত্রণের সাথে সংশ্লিষ্ট রাশি হলো টর্ক (torque) বা বলের ভ্রামক (moment of force)।

কৌণিক ত্বনণের সাথে সংশ্লিষ্ট রাশি যে বল নয়, তা আমরা আমাদের দৈনন্দিন অভিজ্ঞতা থেকেই দেখতে পাই। কোনো দরজার উপর প্রযুক্ত বল বিভিন্ন কৌণিক ত্বরণ সৃষ্টি করতে পারে—এটি নির্ভর করে বল কোথায় প্রয়োগ করা হয়েছে আর কোন দিকে প্রয়োগ করা হয়েছে তার উপর। দরজার কবজার উপর সরাসরি প্রযুক্ত বল কোনো কৌণিক ত্বরণই সৃষ্টি করে না, আবার সেই একই মানের বল যদি দরজার বাইরের প্রান্তে দরজার সাথে লম্বভাবে প্রয়োগ করা হয়, তাহলে সর্বোচ্চ কৌণিক ত্বরণ সৃষ্টি করে থাকে। সুতরাং দরজার এ ঘূর্ণন প্রক্রিয়া নির্ভর করে প্রযুক্ত বলের মান, ঘূর্ণন অক্ষ থেকে বলের প্রয়োগ বিন্দুর দূরত্ব আর কত কোণে বল প্রয়োগ করা হয়েছে তার উপর। এ সকল রাশি মিলিয়ে ঘূর্ণন গতির ক্ষেত্রে আমরা যে রাশির সংজ্ঞা দেই তাই হচ্ছে টের্ক। টক হচ্ছে একটি বলের ঘূর্ণন সৃষ্টি করার সামর্থ্যের একটি পরিমাপ।

সংজ্ঞা : কোনো বিন্দু বা অক্ষকে কে<mark>ন্দ্র করে</mark> ঘূর্ণায়মান কোনো কণার ব্যাসার্ধ <mark>ভেক্টর</mark> এবং কণার উপ্র প্রযুক্ত বলের ভেক্টর শুণফলকে ঐ বিন্দু বা অ<mark>ক্ষের সা</mark>পেক্ষে কণাটির উপর প্রযুক্ত টর্ক বলে।

ব্যাখ্যা: ঘূর্ণন কেন্দ্রের সাপেক্ষে <mark>কোনো</mark> কণার ব্যাসার্ধ ভেক্টর বা অবস্থান ভেক্টর \overrightarrow{r} এবং $\overline{\omega}$ কণার উপর প্রযুক্ত বল \overrightarrow{F} হলে, $\overline{\omega}$ কেন্দ্রের সাপেক্ষে কণাটির উপর প্রযুক্ত টর্ক বা বলের ভ্রামক হচ্ছে,

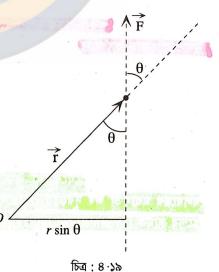
$$\overrightarrow{\tau} = \overrightarrow{r} \times \overrightarrow{F} \qquad \dots \tag{4.34}$$

ঘূর্ণন কেন্দ্র থেকে r দূরত্বে কো<mark>নো ক</mark>ণার উপর F বল প্রযুক্ত হলে ঐ কেন্দ্রের সাপেক্ষে <mark>কণাটি</mark>র উপর প্রযুক্ত টর্ক বা বলের ভামকের মান au হলো

$$\tau = rF \sin \theta \qquad \dots \qquad \dots$$

$$\exists t, \ \tau = Fr \sin \theta \qquad \dots$$
(4.35)

এখানে θ হচ্ছে \overrightarrow{r} এবং \overrightarrow{F} এর অন্তর্ভুক্ত কোণ।


কিন্তু $r \sin \theta$ হচ্ছে ঘূর্ণন কেন্দ্র থেকে বলের <mark>ক্রিয়ারেখার লম্ব দূরত্ব</mark> (চিত্র : ৪.১৯)। সুতরাং কোনো কণার উপর প্রযুক্ত বল এবং ঘূর্ণন কেন্দ্র থেকে বলের ক্রিয়ারেখার লম্ব দূরত্বের গুণফলই হচ্ছে ঐ কেন্দ্রের সাপেক্ষে টর্ক বা বলের ভ্রামকের মান।

দিক : টর্ক একটি ভেক্টর রাশি। এর দিক $\overrightarrow{r} \times \overrightarrow{F}$ এর দিকে। একটি ডানহাতি স্কুকে \overrightarrow{r} ও \overrightarrow{F} এর সমতলে লম্বভাবে স্থাপন করে \overrightarrow{r} থেকে \overrightarrow{F} এর দিকে ক্ষুদ্রতর কোণে ঘুরালে যে দিকে অগ্রসর হয় সেদিকে।

মাত্রা ও একক : টর্কের মাত্রা হচ্ছে বল \times দূরত্বের মাত্রা অর্থাৎ ML^2T^{-2} এবং একক হচ্ছে N m।

তাৎপর্য : কোনো দৃঢ় বস্তুর টর্ক 20~N~m বলতে বোঝায়, যে পরিমাণ টর্ক $1~kg~m^2$ জড়তার ভ্রামক বিশিষ্ট বস্তুতে $20~rad~s^{-1}$ কৌণিক ত্বন সৃষ্টি করে।

বি: দ্র: কোনো অক্ষের সাপেক্ষে ঘূর্ণায়মান দৃঢ় বস্তুর ক্ষেত্রে টর্ক হয় ঐ ঘূর্ণন অক্ষের সাপেক্ষে।

৪.১৭। টর্ক ও কৌণিক ত্বরণের সম্পর্ক : au = I lpha

Relation between Torque and Angular acceleration : $\tau = I\alpha$

ধরা যাক, কোনো একটি দৃঢ় বস্তুর উপর F বল প্রয়োগ করায় বস্তুটি কোনো একটি অক্ষের সাপেক্ষে α সমকৌণিক ত্বরণে ঘূর্ণায়মান। উক্ত বস্তুর যেকোনো একটি কণার ভর m_1 , ঘূর্ণন অক্ষ থেকে কণাটির লম্ব দূরত্ব r_1 এবং কণাটির ত্বরণ a_1 হলে—

ঘূর্ণন অক্ষের সাপেক্ষে কণাটির উপর প্রযুক্ত টর্ক বা বলের ভ্রামক $= Fr_1$

$$= m_1 a_1 r_1$$

$$= m_1 \alpha r_1^2 \qquad [\because a_1 = r_1 \alpha]$$

$$= \alpha m_1 r_1^2$$

অনুরূপে ঘূর্ণন অক্ষের সাপেক্ষে m_2 ভরের কণাটির উপর প্রযুক্ত টর্ক = $\alpha m_2 r_2^2$ । এভাবে প্রতিটি বস্তুকণার উপর প্রযুক্ত টর্ক বের করে তাদের সমষ্টি নিলে সম্পূর্ণ বস্তুটি<mark>র বলের ভ্রামক বা টর্ক τ পাওয়া</mark> যাবে।

$$\tau = \alpha \, m_1 r_1^2 + \alpha \, m_2 r_2^2 + \alpha \, m_3 r_3^2 + \dots$$

$$= \alpha \, (m_1 r_1^2 + m_2 r_2^2 + m_3 r_3^2 + \dots)$$

$$= \alpha \sum m_i r_i^2$$

$$= \alpha I \, [\because I = \sum m_i r_i^2]$$

এখানে I হলো ঘূর্ণন <mark>অক্ষের</mark> সাপেক্ষে বস্তুটির জড়তার ভ্রামক।

বা,
$$\tau = I \alpha = I \frac{d\omega}{dt}$$
 ... (4.36)

∴ টর্ক = জড়তার ভ্রামক × কৌণিক ত্বরণ

দন্ধ (Couple)

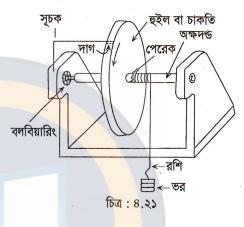
সংজ্ঞা ৪ একটি বস্তুর দুটি বিভিন্ন বিন্দুতে ক্রিয়াশীল সমান, সমান্তরাল ও বিপরীতমুখী বলদ্বয়কে দৃদ্ধ বা যুগল বা জোড় বল বলে।

8.২০ চিত্রে একটি দৃঢ় বস্তুর A ও B বিন্দুতে দুটি সমান, সমান্তরাল ও বিপরীতমুখী বল F, F প্রয়োগ করা হলো।

এ দুটি বল মিলে একটি দ্বন্দু তৈরি হয়। বলদ্বয়ের ক্রিয়া রেখার মধ্যবর্তী লম্ব দূরত্বকে দ্বন্দের বাহু বলে। এখানে d দ্বন্দের বাহু। যেকোনো একটি বল ও বলদ্বয়ের মধ্যবর্তী লম্ব দূরত্বের গুণফলের মানকে দ্বন্দ্বের ভামক (moment of the couple) বলে।

8.২০ চিত্রানুযায়ী দ্বন্দ্বের ভ্রামক,

$$C = F \times AB = F \times d$$



চিত্ৰ ঃ ৪ -২০

ছন্দের ভ্রামককেও টর্ক বলে। এ জন্য এর একক হবে N m। যে ছন্দের জন্য বস্তু ঘড়ির কাঁটার বিপরীত দিকে ঘুরতে চেষ্টা করে সে ছন্দের ভ্রামককে ধনাত্মক এবং যে ছন্দের জন্য বস্তু ঘড়ির কাঁটার দিকে ঘুরতে চেষ্টা করে সে ছন্দের ভ্রামককে ঋণাত্মক ধরা হয়।

8.১৮। ব্যবহারিক Practical ফ্লাইহুইলের বর্ণনা

ফ্লাইহুইল হচ্ছে একটি বড় ব্যাসের চাকতি। এর সাথে একটি অপেক্ষাকৃত সরু অক্ষদণ্ড লাগানো থাকে (চিত্র : ৪.২১)। চাকতিটির অভিকর্ষ কেন্দ্র এর ঘূর্ণন অক্ষে অবস্থিত। অক্ষদণ্ডের দুই প্রান্ত একটা দৃঢ় কাঠামোর সাথে বল বিয়ারিং দিয়ে আটকানো থাকে। অক্ষদণ্ডের সাথে একটি রশি পেঁচানো থাকে যার প্রান্তে উপযুক্ত ভর আটকানো থাকে। এই ভরের ওজনের প্রভাবে ফ্লাইহুইলে ঘূর্ণন সৃষ্টি হয়। যে রশিটি নেওয়া হয় তার দৈর্ঘ্য ভূমি থেকে অক্ষ দণ্ড পর্যন্ত হওয়ার প্রয়োজন অর্থাৎ রশিটির দৈর্ঘ্য এমন হতে হবে যেন ভরটি যখন ভূমি স্পর্শ করে ঠিক সে সময়ে রশিটি অক্ষদণ্ড থেকে বিচ্ছিন্ন হয়ে যাবে। চাকতির ঘূর্ণন পরিমাপের জন্য কাঠামোর সাথে একটি সূচক লাগানো থাকে।

পরীক্ষণের নাম	আপন অক্ষের সাপেক্ষে একটি ফ্লাইহুইলের জড়তার <mark>ভ্রাম</mark> ক নির্ণয়
পিরিয়ড : ২	

মূল তত্ত্ব : কোনো নির্দিষ্ট অক্ষ থেকে কোনো <mark>দৃঢ় বস্তুর প্রত্যেকটি কণার লম্ব দূরত্ত্বের</mark> বর্গ এবং এদের প্রত্যেকের ভরের গুণফলের সমষ্টিকে ঐ অক্ষের সাপেক্ষে বস্তুর জড়তার ভ্রামক বলে।

যখন রশিতে আটকানো ভরটি অভিকর্ষের প্রভাবে নিচে পড়তে থাকে তখন ভরের বিভব শক্তি ফ্লাইহুইলে কৌণিক বেগ উৎপন্ন করবে। m ভর ভূমি থেকে h উচ্চতায় থাকলে তার বিভবশক্তি হবে mgh। এখন শক্তির নিত্যতা সূত্র থেকে আমরা লিখতে পারি,

পড়ন্ত ভরের হারানো পড়ন্ত ভরের
$$\frac{1}{2} m v^2 + \frac{1}{2} I \omega^2 + n_1 F$$
 ... (1) এখানে, $\nu = \omega$ রের রৈখিক বেগ $\omega = \frac{1}{2} \pi v^2$ কালিক বেগ

F = প্রতি ঘূর্ণনে ঘর্ষণের বিরুদ্ধে কাজ

🛾 n1 = ভরটি ফ্লাইভ্ইল থেকে বিচ্ছিন্ন হওয়া পর্যন্ত ঘূর্ণন সংখ্যা বা অক্ষদণ্ডে রশির পাকসংখ্যা।

রশিটি ফ্লাইহুইল থেকে বিচ্ছিন্ন হওয়ার পর হুইলের কৌণিক বেগ ক্রমশ হ্রাস পেয়ে হুইলটি এক সময় থেমে যাবে। এ সময়ে ফ্লাইহুইলের কৌণিক গতিশক্তি $\frac{1}{2} I\omega^2$ ঘর্ষণের বিরুদ্ধে কাজে ব্যবহৃত হবে। যদি হুইলটি রশি বিচ্ছিন্ন হওয়ার পর থেমে যাওয়ার আগে n_2 ঘূর্ণন সম্পন্ন করে তাহলে,

$$\frac{1}{2}I\omega^2 = n_2F \qquad \text{at}, \ F = \frac{1}{2}\frac{I\omega^2}{n_2}$$

F এর মান সমীকরণ (1) বসিয়ে আমরা পাই,

$$mgh = \frac{1}{2}mv^2 + \frac{1}{2}I\omega^2 + \frac{1}{2}I\omega^2 \frac{n_1}{n_2}$$

$$\therefore I = \frac{2mgh - mv^2}{\omega^2 \left(1 + \frac{n_1}{n_2}\right)}$$

অক্ষদণ্ডে ব্যাসার্ধ r হলে $v = r\omega$

$$\therefore I = \frac{2mgh - m(r\omega)^2}{\omega^2 \left(1 + \frac{n_1}{n_2}\right)}$$

ৰা,
$$I = \frac{m\left(\frac{2gh}{\omega^2} - r^2\right)}{1 + \frac{n_1}{n_2}}$$
 ... (2)

অক্ষদণ্ড থেকে ভর বিচ্ছি<mark>নু হওয়া</mark>র সময় হুইলের কৌণিক বেগ ω এবং হুইল <mark>যদি t</mark> সময়ে স্থির অবস্থায় আসে, তাহলে তার শেষ কৌণিক বেগ হবে শূন্য । <mark>ঘর্ষণ বল</mark> একই থাকলে হুইলের গতি সুষমভাবে হ্রাস পায় । সুতরাং হুইলের গড় কৌণিক বেগ হবে $\frac{\omega+0}{2}=\omega$ /2 ।

ভূইলের গড় কৌণিক বেগ, $\frac{\omega}{2} = \frac{2\pi n_2}{t}$ $\therefore \omega = \frac{4\pi n_2}{t}$

যন্ত্রপাতি : ফ্লাইহুইল, স্টপ ওয়াচ, স্লাইড ক্যালিপার্স ও প্রয়োজনীয় ভর।

কাজের ধারা:

- 🕽 । ফ্লাইহুইলের গায়ে চক দিয়ে দাগ দিয়ে সূচকটি দাগের উপর আনা হয়।
- ২। চিকন রশির সাথে m ভর বেঁধে রশিটিকে অক্ষদণ্ড গায়ে পেঁচানো হয়। রশির দৈর্ঘ্য এমন হতে হবে যেন যখন ভরটি ভূমি স্পর্শ করে ঠিক সেই সময় রশিটি অক্ষদণ্ড হতে বিচ্ছিন্ন হয়ে যায়। অক্ষদণ্ডের গায়ে রশিটি n_1 সংখ্যক বার পেঁচানো হয়।
- ৩। ভরটিকে এখন পড়তে দেওয়া হয় ফলে হুইলটি আপন অক্ষের চারদিক ঘুরতে শুরু করে। যে মুহূর্তে রশিটি অক্ষদণ্ড থেকে বিচ্ছিন্ন হয়ে যায় ঠিক সেই মুহূর্তে স্টপ ওয়াচ চালিয়ে দেওয়া হয়। হুইলটি স্থির অবস্থায় আসা পর্যন্ত এর ঘূর্ণন সংখ্যা n_2 গণনা করা হয়। হুইলটি স্থির অবস্থায় আসা মাত্র স্টপ ওয়াচ বন্ধ করে n_2 ঘূর্ণন সম্পন্ন করতে প্রয়োজনীয় সময় t নির্ণয় হয়।
 - ৪। স্লাইড ক্যালিপার্সের সাহায্যে অক্ষদণ্ডের ব্যাসার্ধ r পরিমাপ করা হয়। পর্যবেক্ষণ ও সন্ধিবেশন
 - ক. রশির প্রান্তে বাঁধা ভরের পরিমাণ, $m=... \ \mathrm{kg}$
 - খ. স্লাইড ক্যালিপার্সের ভার্নিয়ার ধ্রুবক নির্ণয় : প্রধান স্কেলের ক্ষুদ্রতম এক ঘরের মান, $s = \dots m$

ম্লাইড ক্যালিপার্সের সাহায্যে অক্ষদণ্ডের ব্যাসার্ধ নির্ণয়ের ছক

পর্যবেক্ষণ	প্রধান	ভার্নিয়ার	ভার্নিয়ার	ভার্নিয়ার	আপাত	যান্ত্ৰিক	প্রকৃত ব্যাস	গড় ব্যাস	ব্যাসার্ধ
সংখ্যা	ক্ষেল পাঠ	সমপাতন	ধ্রুবক	ক্ষেল পাঠ	ব্যাস	ক্রটি	d=d'-(±e)	d	$r = \frac{d}{d}$
	M	. V	VC	F=V×VC	d' =M+F	±e	, ,		$r = \overline{2}$
	m	8	m	m	m	m	m	m	m
1									
2									×
3									

ফ্লাইহুইলের জড়তার ভ্রামক নির্ণয়ের ছক

পর্যবেক্ষণ সংখ্যা	n_1	$h = 2\pi r n_1$	t	গড় t	n_2	গড় n ₂	$\omega = \frac{4\pi n_2}{t}$	জড়তার ভ্রামক <i>I</i>
	11	m	S	S			rad s ⁻¹	kg m ²
1								`
2								
3							2	

হিসাব

জড়তার ভামক,
$$I = \frac{m\left(\frac{2gh}{\omega^2} - r^2\right)}{1 + \frac{n_1}{n_2}} = \dots \text{kg m}^2$$

আপন অক্ষের সাপেক্ষে ফ্লাইহুইলের জড়তার ভ্রামক, $I = \dots kg m^2$

সতৰ্কতা

- ১। রশি অক্ষদণ্ডের গায়ে দৃঢ়ভাবে পেঁচানো হয়।
- ২। n_1 সঠিকভাবে গণনা করতে হয়।
- ৩। n_2 সঠিকভাবে গণনা করতে হয়।
- 8। t সূক্ষভাবে নির্ণয় করতে হয়।
- ৫। উচ্চতা h সঠিকভাবে নির্ণয় করতে হয়।
- ৬। ভর মুক্ত করে দিলে ফ্লাইহুইল যেন আপনাআপনি ঘুরতে শুরু করে সেদিকে খেয়াল রাখতে হবে।
- ৭। রশিটি অক্ষদণ্ডের তুলনায় অনেক চিকন হতে হবে।

৪.১৯। ঘূর্ণন গতির ক্ষেত্রে নিউটনের গতিসূত্রের রূপ

Newton's Laws of Motion for Rotational Motion

ইতোমধ্যে আমরা রৈখিক গতির ক্ষেত্রে নিউটনের গতির সূত্রগুলো আলোচনা করেছি। ঘূর্ণন গতির ক্ষেত্রেও এ সূত্রগুলো পরিবর্তিতরূপে প্রযোজ্য।

প্রথম সূত্র : বাহ্যিক টর্ক প্রয়োগ করে বস্তুর ঘূর্ণনগতির অবস্থার পরিবর্তন করতে বাধ্য না করলে ঘূর্ণনশীল বস্তু সমকৌণিক বেগে ঘুরতে থাকবে বা অঘূর্ণনশীল বস্তু ঘুরবে না।

এ সূত্রকে আমরা এভাবে প্রকাশ করতে পারি, "যদি কোনো বস্তুর উপর নিট টর্ক শূন্য হয় $(\Sigma \tau = 0)$ তাহলে বস্তুটির কৌণিক ত্বরণও শূন্য হবে $(\alpha = 0)$ ।

দ্বিতীয় সূত্র : কোনো বস্তুর কৌণিক ভরবেগের পরিবর্তনের হার তার উপর প্রযুক্ত টর্কের সমানুপাতিক এবং কৌণিক ভরবেগের এ পরিবর্তন প্রযুক্ত টর্কের দিকে ঘটে। অর্থাৎ

$$\frac{dL}{dt} \propto \tau$$

দ্বিতীয় সূত্রকেও এভাবে বিবৃত <mark>করা যায়, "কোনো বস্তুর কৌণিক ত্বরণ তার উপর প্রযুক্ত নিট টর্কের</mark> সমানুপাতিক।" গাণিতিকভাবে,

$$\Sigma \tau = I \alpha$$

বা,
$$\alpha = \frac{1}{I} \sum \tau$$

তৃতীয় সূত্র : ঘূর্ণনশীল<mark> বস্তুর</mark> ক্ষেত্রে ক্রিয়া প্রতিক্রিয়াকারী জোড়া জোড়া <mark>কণার</mark> উপর প্রযুক্ত টর্ক সমান ও বিপরীতমুখী।

i ও j দুটি কণার ক্ষেত্রে পারম্পরিক ক্রিয়া প্রতিক্রিয়ার ফলে উদ্ভূত নিট টর্ক শূন্য অর্থাৎ $au_{ii} = - au_{ii}$

8.২০। কৌণিক ভরবে<mark>গের নি</mark>ত্যতা বা সংরক্ষণ সূত্র

Law of Conservation of Angular Momentum

ঘূর্ণন গতি সংক্রোন্ত নিউটনের গতির <mark>প্রথম সূত্র থেকে আমরা জানি, বাহ্যিক টর্ক যদি শূ</mark>ন্য হয়, তাহলে বস্তু সমকৌণিক বেগে ঘুরতে থাকবে। সময়ের সাপেক্ষে কৌণিক বেগ ধ্রুব <mark>হলে কৌণিক ভরবে</mark>গও ধ্রুব থাকে। অন্যকথায় কোনো বস্তুর উপর প্রযুক্ত টর্ক শূন্য হলে, বস্তুটির কৌণিক ভরবেগ সংরক্ষিত থাকে।

এ কথা বহু কণা সমন্বয়ে গঠিত একটি ব্যবস্থার (System) জন্যও প্রযোজ্য। একে কৌণিক ভরবেগের নিত্যতা বা সংরক্ষণ সূত্র বলে।

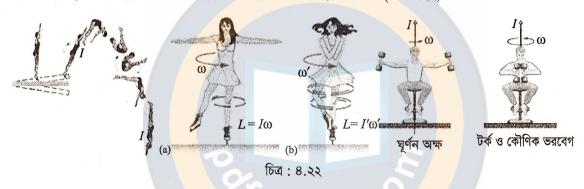
সূত্র : কোনো ব্যবস্থার উপর প্রযুক্ত নিট টর্ক শূন্য হলে ব্যবস্থাটির মোট কৌণিক ভরবেগ সংরক্ষিত থাকে।

প্রতিপাদন : কোনো অক্ষের সাপেক্ষে কোনো ব্যবস্থার জড়তার ভ্রামক I, ঐ অক্ষের সাপেক্ষে কৌণিক ভরবেগ L এবং ব্যবস্থার কৌণিক বেগ ω হলে,

$$L = I\omega$$

একে সময়ের সাপেক্ষে অন্তরীকরণ করে আমরা পাই,

$$\frac{dL}{dt} = \frac{d}{dt} (I\omega) = I \frac{d\omega}{dt}$$


$$\therefore \frac{dL}{dt} = I\alpha \left[\because \frac{d\omega}{dt} = \alpha \right]$$

কিন্তু প্রযুক্ত টর্ক
$$\tau$$
 হলে,
$$\tau = I\alpha$$

$$\therefore \frac{dL}{dt} = \tau$$
 এখন $\tau = 0$ হলে $\frac{dL}{dt} = 0$

বা, L=ধ্বক

সূতরাং প্রযুক্ত টর্ক শূন্য হলে ব্যবস্থার কৌণিক ভরবেগ ধ্রুবক থাকে, অর্থাৎ সংরক্ষিত হয়। এটিই কৌণি<mark>ক ভরবেগের</mark> নিত্যতা বা সংরক্ষণ সূত্র।

আমরা দেখতে পাই সাঁতারু ডাইভিং মঞ্চ থেকে যখন কোনো পুলে ডাইভ দেন তখন তার শরীরের অঙ্গভঙ্গির পরিবর্তন এমনভাবে হতে থাকে যে, তার জড়তার ভ্রামক ও কৌণিক বেগের পরিবর্তন হয়। কিন্তু যেহেতু বাইরে থেকে কোনো বল তথা টর্ক প্রযুক্ত বলা হয় না, তাই তার কৌণিক ভরবেগ ধ্রুব থাকে অর্থাৎ তার জড়তার ভ্রামক ও কৌণিক বেগের গুণফল সবসময় একই থাকে। ব্যালেরিনা ও জিমন্যাস্টের বেলায়ও ঠিক একই ঘটনা ঘটে (চিত্র ৪.২২)।

সার্বজনীনতা : কৌণিক ভরবেগের নিত্যতার সূত্র একটি সার্বজনীন সূত্র। এ সূত্র পারমাণবিক ও নিউক্লিয় ক্ষেত্রে যেমন ঘটে, তেমনি নভোমগুলীয় এবং আমাদের ইন্দ্রিয়গ্রাহ্য স্থুল জগতের ক্ষেত্রেও প্রযোজ্য। অপরপক্ষে নিউটনীয় বলবিদ্যা পারমাণবিক ও নিউক্লিয় এলাকায় প্রযোজ্য হয় না। কাজেই নিউটনীয় বলবিদ্যার চেয়ে কৌণিক ভরবেগের এ নিত্যতার সূত্র অধিকতর মৌলিক। পারমাণবিক ও নিউক্লিয় পদার্থবিজ্ঞানে আমরা দেখি যে, ক্ষুদ্রাতিক্ষুদ্র কণাসমূহ যেমন ইলেকট্রন, প্রোটন, মেসন ও নিউট্রন ইত্যাদির স্বকীয় স্পিনের সাথে সংশ্লিষ্ট কৌণিক ভরবেগ রয়েছে। আরো রয়েছে তাদের কাক্ষিক গতির (orbital motion) সাথে সংশ্লিষ্ট কৌণিক ভরবেগ। আমরা যখন মোট কৌণিক ভরবেগের নিত্যতার নীতি ব্যবহার করি তখন আমাদের অবশ্যই এ মোট কৌণিক ভরবেগে স্পিন কৌণিক ভরবেগও অন্তর্ভুক্ত করতে হয়। একইভাবে নভোমগুলীয় ক্ষেত্রে সূর্য, নক্ষত্র, গ্রহ, উপগ্রহ ইত্যাদির ক্ষেত্রে কৌণিক ভরবেগে স্পিন কৌণিক ভরবেগ অন্তর্ভুক্ত করতে হয়। কৌণিক ভরবেগের নিত্যতা সৌর জগতের উৎস, অতিকায় নক্ষত্রের সংকোচন ও নভোমগুলীয় বিভিন্ন সমস্যা সংক্রান্ত তথ্যাদি মূল্যায়নে মুখ্য ভূমিকা পালন করে। তাই কৌণিক ভরবেগের নিত্যতা বা সংরক্ষণশীলতা নীতি একটি সার্বজনীন নীতি।

8.২১। কেন্দ্রমুখী বল ও কেন্দ্রবিমুখী বল Centripetal Force and Centrifugal Force কেন্দ্রমুখী বল :

কোনো বস্তুর উপর বাইরে থেকে বল প্রয়োগ না করলে এর বেগের পরিবর্তন হয় না। আমরা জানি, কোনো বস্তুর বেগের দিকের লম্ব বরাবর বল প্রয়োগ করা হলে এর বেগের মানের কোনো পরিবর্তন হয় না, কিন্তু দিকের পরিবর্তন হয়। যেহেতু কোনো বস্তু বৃত্তাকার পথে সমদ্রুতিতে ঘুরার সময় এর বেগের মানের কোনো পরিবর্তন হয় না কিন্তু প্রতিনিয়ত দিক পরিবর্তিত হয়, কাজেই বৃত্তাকার পথে ঘুরার সময় বস্তুর বেগের দিকের সাথে লম্ব বরাবর প্রতিনিয়ত বল প্রযুক্ত হয়। বৃত্তের ব্যাসার্ধ হচ্ছে স্পর্শক তথা বেগের দিকের সাথে লম্ব; তাই বৃত্তাকার পথে ঘুরার সময় বস্তুর উপর ব্যাসার্ধ বরাবর কেন্দ্রের দিকে সব সময়ই একটি বল ক্রিয়া করে। এ বলকে কেন্দ্রমুখী বল বলা হয়।

বৃত্তাকার পথে সমদ্রুতিতে ঘূর্ণায়মান কোনো বস্তুর উপর প্রযুক্ত নিট বলকেই কেন্দ্রমুখী বল নামে অভিহিত করা হয়। এ বল কিন্তু আলাদা কোনো বল নয়। কোনো বস্তু তার ওজন বা কোনো সুতার টান বা কোনো ঘর্ষণ বল বা কোনো অভিলম্ব বল বা একাধিক বলের সমন্বয়ের প্রভাবে বৃত্তাকার পথে ঘুরে। কোনো বস্তুর উপর প্রযুক্ত নিট বল যদি বৃত্তাকার গতি উৎপন্ন করে তখন সেই নিট বল বা লব্ধি বলকেই কেন্দ্রমুখী বল বলা হয়।

সংজ্ঞা : যখন কোনো বস্তু একটি বৃত্তাকার পথে ঘুরতে থাকে তখন ঐ বৃত্তের কেন্দ্র অভিমুখে যে নিট বল ক্রিয়া করে বস্তুটিকে বৃত্তাকার পথে গতিশীল রাখে তাকে কেন্দ্রমুখী বল বলে।

বস্তুকে বৃত্তাকার পথে ঘুরানোর জন্য নানাভাবে বল প্রয়োগ করা যেতে পারে। একটি সুতার এক প্রান্তে একটি ঢিল বেঁধে সুতার অন্য প্রান্ত আঙুলে ধরে যদি সমন্দ্রতিতে <mark>ঘুরানো যায় তাহলে সুতার মধ্য দিয়ে আ</mark>ঙুলের দিকে ঢিলের উপর একটি বল প্রযুক্ত হবে। সুতার মধ্য দিয়ে বৃত্তাকার প<mark>থের কেন্দ্রের</mark> দিকে ঢিলটির উপর যে বল প্রযুক্ত হচ্ছে তাই হলো কেন্দ্রমুখী বল।

কেন্দ্রমুখী বল উৎপন্ন হওয়ার জন্য যে ঘূর্ণায়মান বস্তু আর ঘূর্ণন কেন্দ্রের মধ্যে সরাসরি সংযোগ থাকতে হবে এমন কোনো কথা নেই। যখনই কোনো বস্তু কোনো বিন্দুকে কেন্দ্র করে বৃত্তাকার পথে গতিশীল হয় তখনই কেন্দ্রমুখী বল উৎপন্ন হয়। পৃথিবী সূর্যের চারদিকে বা চন্দ্র পৃথিবীর চারদিকে ঘুরার সময় কেন্দ্রমুখী বল লাভ করে। এ কেন্দ্রমুখী বল মহাকর্ষজনিত। এখানে বস্তু ও কেন্দ্রের মধ্যে সরাসরি কোনো সংযোগ নেই। আবার পরমাণুর ইলেকট্রনগুলো যখন নিউক্লিয়াসের চারদিকে ঘুরে তখন ইলেকট্রনগুলোতে কেন্দ্রমুখী বল উৎপন্ন হয়। এ বল তড়িৎ আধানের জন্য হয়ে থাকে। এখানে ইলেকট্রন ও নিউক্লিয়াসের মধ্যকার স্থির তড়িৎ আকর্ষণ বলই কেন্দ্রমুখী বল হিসেবে কাজ করে।

কেন্দ্রমুখী বলের মান: তৃতীয় অধ্যায়ে বৃত্তাকার গতির আলোচনায় আমরা r ব্যাসার্ধের বৃত্তের পরিধি বরাবর v সমদ্রুতিতে গতিশীল বস্তুর বৃত্তের ব্যাসার্ধ বরাবর কেন্দ্রের দিকে কেন্দ্রমুখী ত্বরণ a প্রতিপাদন করেছি $a=\frac{v^2}{r}$ । সূতরাং m ভরের কোনো বস্তু r ব্যাসার্ধের বৃত্তাকার পথে v সমদ্রুতিতে ঘুরলে তার উপর ক্রিয়াশীল কেন্দ্রমুখী বল হবে, কেন্দ্রমুখী বল = ভর \times কেন্দ্রমুখী ত্বরণ

বা,
$$F = \frac{mv^2}{r}$$
 ... (4.37)

বস্তুটির কৌণিক বেগ ω হলো, $v=\omega r$

$$\therefore F = m\omega^2 r \qquad ... \tag{4.38}$$

কেন্দ্রমুখী বলের ভেক্টর রূপ:

(4.38) সমীকরণকে ভেক্টররূপে লিখলে আমরা পাই,

$$\overrightarrow{F} = -m\omega^{2}\overrightarrow{r} = -m(\overrightarrow{\omega}.\overrightarrow{\omega})\overrightarrow{r} = -m\frac{v^{2}}{r^{2}}\overrightarrow{r} \dots$$
 (4.38a)

এখানে – চিহ্ন থেকে দেখা যায় কেন্দ্রমুখী বলের দিক ব্যাসার্ধ ভেক্টর তথা অবস্থান ভেক্টরের বিপরীত দিকে অর্থাৎ ব্যাসার্ধ বরাবর কেন্দ্রের দিকে (চিত্র ৩.২৪)। সমীকরণ (4.38) থেকে দেখা যায় যে,

যেহেতু কেন্দ্রমুখী বল $F=m\omega^2 r$, সুতরাং দেখা যাচ্ছে কেন্দ্রমুখী বল ঘূর্ণায়মান বস্তুর কৌণিক বেগ ω এবং ঘূর্ণন অক্ষ বা কেন্দ্র থেকে দূরত্ব তথা ব্যাসার্ধ r এর উপর নির্ভর করে। কৌণিক বেগ ধ্রুব থাকলে কেন্দ্রমুখী বল ব্যাসার্ধের সমানুপাতিক।

কেন্দ্রমুখী বলের জন্য বৃত্তের ব্যাসার্ধ বরাবর কেন্দ্রের দিকে বস্তুর যে ত্বরণ হয় তাকে কেন্দ্রমুখী ত্বরণ বলে। সুতরাং কেন্দ্রমুখী ত্বরণ a হলো,

$$a = \frac{v^2}{r} = \omega^2 r \qquad \dots \tag{4.39}$$

কেন্দ্রবিমুখী বল

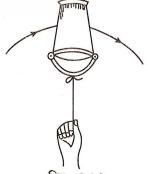
সংজ্ঞা: কোনো বৃস্তুকে বৃত্তাকার পথে ঘুরাতে হলে ঐ বস্তুর উপর যে বল প্রয়োগ করা হয় তাই হচ্ছে কেন্দ্রমুখী বল। নিউটনের তৃতীয় সূত্রানুসারে এ বলের প্রতিক্রিয়া স্বরূপ যে বল বৃত্তের কেন্দ্রের উপর ব্যাসার্ধ বরাবর কেন্দ্রের বাইরের দিকে ক্রিয়া করে তাকে কেন্দ্রবিমুখী বল বলে।

কেন্দ্রবিমুখী বল হচ্ছে কেন্দ্রমুখী বলের সমান ও বিপরীতমুখী।
ক্রিয়া ও প্রতিক্রিয়া কোনো সময়ই একই বস্তুর উপর প্রযুক্ত হয়।
তাই কেন্দ্রমুখী বল ও কেন্দ্রবিমুখী বল দুটি ভিন্ন বস্তুর উপর প্রযুক্ত হয়।
কেন্দ্রমুখী বল প্রযুক্ত হয় ঘূর্ণায়মান বস্তুর উপর এবং এর দিক হচ্ছে
বৃত্তের ব্যাসার্ধ বরাবর কেন্দ্রের দিকে। অপরপক্ষে কেন্দ্রবিমুখী বল
প্রযুক্ত হয় বৃত্তাকার পথের কেন্দ্রের উপর যা ব্যাসার্ধ বরাবর কেন্দ্রের
বাইরের দিকে ক্রিয়া করে।

চিত্ৰ: ৪ - ২৩

মান : m ভরের কোনো বস্তু r ব্যাসার্ধের বৃত্তাকার পথে ν সমদ্রুতিতে ঘুরলে বৃত্তাকার পথের কেন্দ্রে অনুভূত কেন্দ্রবিমুখী বল হচ্ছে $\frac{m v^2}{r}$ ।

সুতায় বাঁধা একটি ঢিলকে যখন <mark>বৃত্তাকা</mark>র পথে ঘুরানো হয় তখন সুতা ঢিলটির উপর যে বল বৃত্তের কেন্দ্রের দিকে প্রয়োগ করে অর্থাৎ সুতার টানই হচ্ছে কেন্দ্রমুখী বল এবং সুতার মাধ্যমে আঙুলের উপর যে বল প্রযুক্ত হয় তা হচ্ছে কেন্দ্রবিমুখী বল (চিত্র ৪-২৩)।

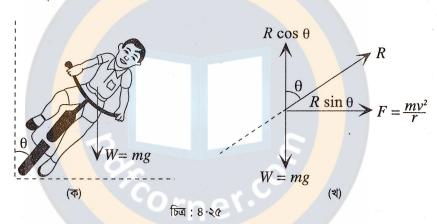

তেমনি সৌরজগতে সূর্যকে কে<mark>ন্দ্র করে</mark> আবর্তনরত গ্রহগুলোর উপর প্রযুক্ত মহাকর্ষ বল হ<mark>চ্ছে কেন্দ্র</mark>মুখী বল, আর সূর্যের উপর প্রযুক্ত মহাকর্ষ বল হচ্ছে কেন্দ্রবি<mark>মুখী ব</mark>ল। আবার পরমাণুতে ঘূর্ণনরত ইলেক্ট্রনগুলোর <mark>উপর প্র</mark>যুক্ত স্থির তড়িৎ আকর্ষণ বল হচ্ছে কেন্দ্রমুখী বল। আর নিউক্লিয়াসের উপর ইলেক্ট্রনের দিকে প্রযুক্ত আকর্ষণ বল হচ্ছে কেন্দ্রবিমুখী বল।

8.২২। কেন্দ্রমুখী বল ও কেন্দ্রবিমুখী বলের ব্যবহার : যানবাহন ও রাস্তার বাঁক Uses of Centripetal and Centrifugal Forces : Vehicles and Turning of Highways ১। পানি ভর্তি বালতির উল্লম্বতলে আবর্তন :

পানি ভর্তি একটি বালতিকে উল্লয়তলে জোরে ঘুরালে দেখা যাবে যে, বালতিটি যখন সর্বোচ্চ বিন্দুতে উপুড় হয়ে অবস্থান করে তখনও বালতি থেকে পানি পড়ে যায়। এর কারণ ঘূর্ণন গতির ফলে পানির উপর যে কেন্দ্রবিমুখ বল ক্রিয়া করে সর্বোচ্চ বিন্দুতে বালতি যখন উপুড় হয়ে যায় তখন সেটি উর্ধ্বমুখে ক্রিয়া করে পানির ওজনকে নাকচ করে, ফলে পানি পড়ে যায় না। (চিত্র নং ৪.২৪)

২। বাঁকা পথে সাইকেল আরোহীর গতি:

কোনো সাইকেল আরোহী বা কোনো দৌড়বিদকে যখন বাঁক নিতে হয় তখন সাইকেলসহ আরোহীকে বা দৌড়বিদকে বাঁকের ভেতরের দিকে অর্থাৎ বৃত্তাকার পথের কেন্দ্রের দিকে কাত হয়ে বাঁক নিতে হয়। সোজাভাবে বাঁক নিতে গেলে উল্টে পড়ে যাওয়ার সম্ভাবনা থাকে। বৃত্তাকার পথে সাইকেল চালানোর জন্য বৃত্তাকার পথের


চিত্ৰ: 8.২৪

কেন্দ্রের দিকে অনুভূমিক বরাবর একটা কেন্দ্রমুখী বলের প্রয়োজন হয়। আরোহীসহ সাইকেলের ভর যদি m হয়, আর যদি

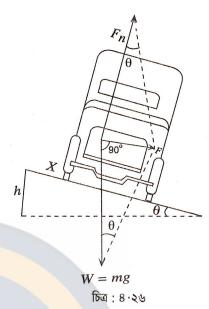
আরোহী r ব্যাসার্ধের বৃত্তাকার পথে ν সমদ্রুতিতে সাইকেল চালান তাহলে তার যে কেন্দ্রমুখী বলের প্রয়োজন হবে তার মান হলো $F=\frac{m v^2}{r}$ । একজন আরোহী যখন সাইকেল চালান তখন তার উপর দুটি বল ক্রিয়া করে :

(১) আরোহীসহ সাইকেলের ওজন W = mg (চিত্র: 8.2৫ক), খাড়া নিচের দিকে এবং (২) ভূমির প্রতিক্রিয়া R, (চিত্র: 8.2৫খ) সাইকেল যে দিকে ভূমিতে বল প্রয়োগ করে তার বিপরীত দিকে।

উপরিউক্ত দুটি বলের লব্ধি থেকেই তাকে প্রয়োজনীয় কেন্দ্রমুখী বল জোগাড় করতে হয়। ভূমির প্রতিক্রিয়া R এবং ওজন W একই সরলরেখায় পরম্পর বিপরীত দিকে ক্রিয়া করলে অনুভূমিক বরাবর লব্ধি তথা কেন্দ্রমুখী বল পাওয়া সম্ভব নয়। সুতরাং কেন্দ্রমুখী বল পাওয়ার জন্য ওজন W এবং প্রতিক্রিয়া R পরম্পরের সাথে হেলে অর্থাৎ কোণ করে ক্রিয়া করতে হবে (চিত্র: $8\cdot ২$ ৫)। যেহেতু ওজন W সব সময়ই খাড়া নিচের দিকে ক্রিয়া করতে হবে । আর সাইকেলের চাকা ভূমিকে যে বরাবর বল বরাবর ক্রিয়া না করে উল্লম্বের সাথে কোণ করে অর্থাৎ হেলে ক্রিয়া করতে হবে । আর সাইকেলের চাকা ভূমিকে যে বরাবর বল দেবে; যেহেতু প্রতিক্রিয়া তার বিপরীত দিকেই হবে, সুতরাং আরোহীসহ সাইকেলকে উল্লম্বের সাথে কোণ করে অর্থাৎ হেলে পড়ে বাঁক নিতে হবে । তাই বৃত্তাকার পথে বাঁক নিতে গেলেই কেন্দ্রমুখী বলের উদ্ভব হয় আর সেই বল সরবরাহ করার জন্যই আরোহীসমেত সাইকেলকে ভূমির দিকে হেলে পড়তে হয় ।

যদি আরোহী উল্লম্বের সাথে θ কোণে বেঁকে যান তাহলে প্রতিক্রিয়া বল R এর উল্লম্ব এবং অনুভূমিক উপাংশ হবে যথাক্রমে $R\cos\theta$ এবং $R\sin\theta$ । প্রতিক্রিয়ার এ উল্লম্ব উপাংশ আরোহীসমেত সাইকেলের ওজন mg-কে প্রশামিত করে আর অনুভূমিক উপাংশই সরবরাহ করে প্রয়োজনীয় কেন্দ্রমুখী বল $\frac{mv^2}{r}$ ।

$$\therefore R \cos \theta = mg$$
এবং $R \sin \theta = \frac{mv^2}{r}$


বা, $\tan \theta = \frac{v^2}{rg}$

... (4.40)

সুতরাং সাইকেল আরোহীকে ν সমদ্রুতিতে r ব্যাসার্ধের বৃত্তাকার পথে বাঁক নিতে গেলে তাকে উল্লম্বের সাথে যে কোণে বাঁকতে হবে তা ওপরের সমীকরণ থেকে বের করা যায়। এ সমীকরণ থেকে দেখা যায় যে, ν -এর মান বড় এবং r-এর মান ছোট হলে $\tan \theta$ তথা θ -এর মান বড় হয়। সুতরাং আরোহীর বেগ্ যতো বেশি হবে এবং বাঁকের ব্যাসার্ধ যতো কম হবে তাকে ততো বেশি হেলতে হবে।

৩। রাস্তায় বা রেল লাইনে ঢাল :

কোনো মোটর বা রেলগাড়ি যখন বাঁক নেয় তখন এ বাঁকাপথে ঘুরার জন্য একটা কেন্দ্রমুখী বলের প্রয়োজন হয়। এ কেন্দ্রমুখী বল না পাওয়া গেলে গাড়ি জড়তার কারণে বাঁকাপথের স্পর্শক বরাবর চলে যাবে। অনেক সময় গাড়ি উল্টে যায়। সমতল পথে বাঁক নেওয়ার সময় গাড়ির চাকা ও রাস্তার মধ্যবর্তী ঘর্ষণ বল এ কেন্দ্রমুখী বল সরবরাহ করে। কিন্তু ঘর্ষণ বলের মান তথা কেন্দ্রমুখী বলের মান খুব কম হওয়ায় গাড়ি বেশি জোরে বাঁক নিতে পারে না। বেশি জোরে বাঁক নিতে গেলে কেন্দ্রমুখী বল তথা ঘর্ষণ বলের মান বাড়াতে হবে। আর সে জন্য বাঁকের মুখে রাস্তার তলকে অনুভূমিক তলের সাথে হেলিয়ে রাখতে হয় যাতে রাস্তার বাইরের দিক ভেতরের দিকের চেয়ে কিছু উঁচুতে থাকে। একে ঢাল বা ব্যাংকিং বলে। অনুভূমিক রেখার সাথে ঐ জায়গায় দুই পাশ যে কোণ উৎপন্ন করে তাকে ব্যাংকিং কোণ বলে।

ব্যাংকিং কোণের রাশিমালা: ধরা যাক, আরোহীসমেত গাড়ির ওজন W। ৪ ২৬ চিত্র থেকে দেখা যাচ্ছে যে, গাড়ির ওজন W সরাসরি নিচের দিকে কাজ <mark>করছে</mark> এবং রাস্তার অভিলম্বিক প্রতিক্রিয়া বল F_n রাস্তা<mark>র সাথে</mark> সমকোণে গাড়ির উপর প্রযুক্ত হচ্ছে। এ দুই বলের লব্ধি F <mark>অনুভূ</mark>মিকভাবে বৃত্তাকার পথের কেন্দ্রের দিকে ক্রিয়া কর<mark>ছে। এ</mark> লব্ধি বলই গাড়িটিকে বৃত্তাকার পথে ঘুরানোর জন্য প্রয়োজ<mark>নীয় কে</mark>ন্দ্রমুখী বল সরবরাহ করছে। এখন চিত্র থেকে $rac{F}{W}= an heta$ এখানে heta হচ্ছে ব্যাংকিং কোণ।

$$\therefore F = W \tan \theta = mg \tan \theta$$
আবার, নিউটনের দ্বিতীয় সূত্র থেকে
$$F = ma = \frac{mv^2}{r}$$

[এখানে
$$m=$$
 গাড়ির ভর]

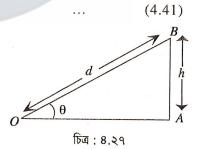
$$\therefore mg \tan \theta = m \frac{v^2}{r}$$

[বৃত্তাকার গতির ক্ষেত্রে কেন্দ্রমুখী ত্বরণ,
$$a = \frac{v^2}{r}$$
]

$$\therefore mg \tan \theta = m$$

$$\therefore \tan \theta = \frac{v^2}{rg}$$

(4.41) নং সমীকরণ থেকে দেখা যাচ্ছে যে, রাস্তার ব্যাংকিং গাড়ির দ্রুতি ও বাঁকের ব্যাসার্ধের উপর নির্ভর করে গাড়ির ভরের উপর নির্ভর করে না।


ধরা যাক, ব্যাংকিং কোণ =
$$\theta$$

রাস্তার প্রস্থ,
$$OB = d$$

এবং রাস্তার ভিতরের প্রান্ত থেকে বাইরের প্রান্তের উচ্চতা.

$$\therefore \sin \theta = \frac{h}{d}$$

বা,
$$h = d \sin \theta$$

(4.42)

৪.২৩। সংঘর্ষ

Collision

ঘাত বল (Impulsive Force)

সংজ্ঞা: খুব অল্প সময়ের জন্য খুব বড় মানের যে বল প্রযুক্ত হয় তাকে ঘাত বল বলে।

ব্যাখ্যা: খুব সীমিত সময়ের জন্য খুব বড় মানের ঘাত বল প্রযুক্ত হয়। অনেক সময় এ ঘাত বলের মান এত বড় হয় যে এর ক্রিয়াকাল খুব কম হলেও এর প্রভাব দৃষ্টিগ্রাহ্য হয়। যে স্বল্প সময়ব্যাপী ঘাত বল প্রযুক্ত হয় সেই সময় অন্যান্য বলের প্রভাব উপেক্ষা করা হয়।

উদাহরণ: ধরা যাক, একটি র্যাকেট কোনো টেনিস বলকে আঘাত করল। র্য়াকেট কর্তৃক প্রযুক্ত বল F টেনিস বলটির ভরবেগ পরিবর্তন করে। যে সময় ধরে টেনিস বলটি র্য়াকেটটির সংস্পর্শে থাকে সে সময়ে র্য়াকেট কর্তৃক প্রযুক্ত বল টেনিস বলটির উপর ক্রিয়াশীল অন্যান্য বলের তুলনায় অনেক বড় হয়। ব্যাকেট কর্তৃক প্রযুক্ত এরূপ বল ঘাত বল।

বলের ঘাত (Impulse of Force)

সংজ্ঞা: কোনো বল ও বলের ক্রিয়াকালের গুণফলকে ঐ বলের ঘাত বলে।

ব্যাখ্যা : কোনো বল \overrightarrow{F} যদি কোনো বস্তুর উপর Δt সময় ধরে ক্রিয়া করে, তা<mark>হলে বলে</mark>র ঘাত \overrightarrow{J} হবে,

$$\overrightarrow{J} = \overrightarrow{F} \Delta t = m \overrightarrow{a} \Delta t = m \frac{\overrightarrow{\Delta v}}{\Delta t} \Delta t$$

$$= m \Delta \overrightarrow{v} = m(\overrightarrow{v_f} - \overrightarrow{v_i})$$

$$\overrightarrow{J} = m \overrightarrow{v_f} - m \overrightarrow{v_i} = \overrightarrow{p_f} - \overrightarrow{p_i} = \Delta \overrightarrow{p}$$
... (4.43)

সুতরাং বলের ঘাত হলো <mark>বস্তুর ভ</mark>রবেগের পরিবর্তন সমান।

$$\vec{J} = \Delta \vec{p}$$

আমাদের দৈনন্দিন জীবনে ঘাতবল ও বলের ঘাতের প্রভাব অপরিসীম। বস্তুকে ধীরগতি করতে হলে অর্থাৎ এর বেগ কমাতে হলে বলের ঘাতের প্রয়োগ হয়। এক্ষেত্রে বলের ঘাত গতির বিপরীত দিকে ক্রিয়া করে। ক্রিকেট খেলায় যখন একজন ফিল্ডার ক্যাচ ধরতে চান তখন গতিশীল বলকে থামিয়ে অর্থাৎ বলটির ভরবেগ শূন্যে নামিয়ে এনে ক্যাচ ধরতে হয়। এতে বলের ঘাতের প্রয়োজন হয় এবং এজন্য একটি বিপরীতমুখী বলকে কিছুক্ষণের জন্য ক্রিয়া করতে হয়। এখন ফিল্ডার যদি তার ঘাত স্থির রাখেন তাহলে ক্রিকেট বলটি তখনই থেমে যাবে। এতে যে সময় ধরে ফিল্ডারের হাতের উপর বল ক্রিয়া করে সেই সময় খুব ক্ষুদ্র হয়। ফলে বলের মান হতে হয় খুবই বৃহৎ— যে বল ফিল্ডারের হাতে তীব্র ব্যথা উৎপন্ন করে। এখন বল ধরার মুহূর্তে ফিল্ডার যদি হাতটকে পেছনের দিকে টেনে নেন, তাহলে বলের ক্রিয়াকাল বৃদ্ধি পায়। ফলে থামানোর জন্য প্রয়োজনীয় ঘাতের যোগানদার বলও কম হয় এবং ক্যাচটি ধরাও অনেক কম পীড়াদায়ক হয়।

একই কারণে আমরা দেখতে পাই একজন মুষ্ঠিযোদ্ধা প্রতিপক্ষের ঘূষির প্রভাব কমানোর জন্য তার মাথাকে পিছনের দিক সরিয়ে নেন। ক্রিকেট খেলায় ব্যাটসম্যানরা ও উইকেটকিপারও একই কারণে প্যাড ও গ্লাভস পরে মাঠ নামেন। প্যাড ও গ্লাভসে দ্রুতগতির ক্রিকেটবল আঘাত করলে প্যাড ও গ্লাভস কিছুটা থেতলে গিয়ে সংঘর্ষের সময়কাল বাড়িয়ে দেয় ফলে ঘাত বল হাস পায় এবং বলের আঘাত কম পীড়াদায়ক হয়।

সংঘর্ষ (Collision)

সংজ্ঞা : দুটি বস্তু যদি একটা খুব বড় মানের বলে খুব অল্প সময়ের জন্যে পরস্পরকে আঘাত করে তাহলে তাকে বলা হয় সংঘর্ষ।

ব্যাখ্যা : যেমন হাতুড়ি দিয়ে পেরেককে আঘাত করা বা ক্রিকেট খেলায় ব্যাট দিয়ে বলকে আঘাত করা। এখানে হাতুড়ি বা ব্যাট খুব অল্প সময়ের জন্য পেরেক বা বলের সংস্পর্শ থাকে কিন্তু খুব বড় মানের বলে আঘাত করে। সংঘর্ষে ঘাত বল ক্রিয়া করে। সংঘর্ষের মূল ধারণাটি হলো : সংঘর্ষে বস্তুগুলোর অথবা অন্তত একটি বস্তুর গতি হঠাৎ এমনভাবে পরিবর্তিত হবে যে আমরা "সংঘর্ষের পূর্ব" এবং "সংঘর্ষের পর"কে সুস্পষ্টভাবে আলাদা করতে পারি। সংঘর্ষে ভরবেগের নিত্যতা সূত্র খাটে অর্থাৎ সংঘর্ষের পূর্বের মোট ভরবেগ এবং কংঘর্ষের পরের মোট ভরবেগ একই থাকে। কিন্তু গতিশক্তি সংরক্ষিত থাকে কিনা তার উপর নির্ভর করে সংঘর্ষকে দুভাগে ভাগ করা হয়। স্থিতিস্থাপক সংঘর্ষ এবং অস্থিতিস্থাপক সংঘর্ষ ভরবেগের সাথে গতিশক্তিও সংরক্ষিত থাকে, অস্থিতিস্থাপক সংঘর্ষে ভরবেগ সংরক্ষিত হয়, কিন্তু গতিশক্তি সংরক্ষিত থাকে না।

স্থিতিস্থাপক সংঘর্ষ (Elastic collision) : দু<mark>টি বস্তুর মধ্যে সংঘর্ষ হলে</mark> যদি মোট গতি শক্তি সংরক্ষিত থাকে অর্থাৎ যদি বস্তুগুলোর মোট গতি শক্তির প<mark>রিবর্তন না হ</mark>য় তাহলে তাকে স্থিতিস্থাপক সংঘর্ষ বলে।

ধরা যাক, m_1 ও m_2 ভরের দুটি বস্তু <mark>একই</mark> সরলরেখা বরাবর চলছে। m_2 এর বেগ m_1 এর বেগের চেয়ে বেশি হলে চলতে চলতে কোনো এক সময় m_2 ভরের বস্তুটি m_1 ভরের বস্তুটিকে ধাক্কা দিবে অর্থাৎ বস্তুদ্বয় সংঘর্ষে লিপ্ত হবে।

 m_1 ও m_2 ভরের দুটি বস্তুর সংঘ<mark>র্ষের আ</mark>গে বেগ যথাক্রমে v_{1i} ও v_{2i} এবং সংঘর্ষের পরে যথাক্রমে বেগ v_{1f} ও v_{2f} হলে (চিত্র: 8.2৮), ভরবেগের সংরক্ষণ সূত্র থেকে লেখা যায়,

$$m_1 v_{1i} + m_2 v_{2i} = m_1 v_{1f} + \frac{m_2 v_{2f}}{m_1 v_{1f}}$$
 ... (4.44)

আবার, গতিশক্তির সংরক্ষণ সূ<mark>ত্র থে</mark>কে লেখা যায়,

$$\frac{1}{2}m_1v_{1i}^2 + \frac{1}{2}m_2v_{2i}^2 = \frac{1}{2}m_1v_{1f}^2 + \frac{1}{2}m_2v_{2f}^2 \qquad ... \tag{4.45}$$

$$v_{2i}$$
 v_{1i} v_{1i}

চিত্ৰ: ৪.২৮

(4.44) ও (4.45) সমীকরণকে যথাক্রমে লেখা যায়,

$$m_1(v_{1i} - v_{1f}) = m_2(v_{2f} - v_{2i})$$
 ... (4.46)

. এবং
$$m_1 \left(v_{1i}^2 - v_{1f}^2 \right) = m_2 \left(v_{2f}^2 - v_{2i}^2 \right)$$
 ... (4.47)

(4.47) সমীকরণকে (4.46) সমীকরণ দিয়ে ভাগ করে আমরা পাই,

$$v_{1i} + v_{1f} = v_{2f} + v_{2i}$$

 $\forall i, v_{1i} - v_{2i} = v_{2f} - v_{1f}$... (4.48)

(4.48) সমীকরণ থেকে দেখা যায় যে, সংঘর্ষের আগে বস্তু দুটি যে আপেক্ষিক বেগ নিয়ে কাছাকাছি আসে এবং সংঘর্ষের পর বস্তু দুটি যে আপেক্ষিক বেগ নিয়ে দূরে সরে যায় তার মান সমান।

(4.48) সমীকরণকে লেখা যায়,

$$v_{2f} = v_{1i} + v_{1f} - v_{2i} \qquad ... \tag{4.49}$$

পদার্থ-১ম (হাসান) -১৭(ক)

(4.49) সমীকরণকে (4.46) সমীকরণে বসিয়ে আমরা পাই,

$$m_1(v_{1i} - v_{1f}) = m_2 (v_{1i} + v_{1f} - v_{2i} - v_{2i})$$

বা,
$$m_1 v_{1i} - m_1 v_{1f} = m_2 v_{1i} + m_2 v_{1f} - 2 m_2 v_{2i}$$

বা, $(m_1 + m_2) v_{1f} = (m_1 - m_2) v_{1i} + 2 m_2 v_{2i}$

$$\therefore v_{1f} = \left(\frac{m_1 - m_2}{m_1 + m_2}\right) v_{1i} + \left(\frac{2 m_2}{m_1 + m_2}\right) v_{2i} \qquad ... \tag{4.50}$$

আবার (4.48) সমীকরণকে লেখা যায়,

$$v_{1f} = v_{2f} + v_{2i} - v_{1i} (4.51)$$

(4.51) সমীকরণকে (4.46) সমীকরণে বসিয়ে আমরা পাই,

$$m_1(v_{1i}-v_{2f}-v_{2i}+v_{1i})=m_2(v_{2f}-v_{2i})$$

 \overline{A} , $(m_1 + m_2) v_{2f} = (m_2 - m_1) v_{2i} + 2m_1 v_{1i}$

$$\therefore v_{2f} = \left(\frac{2m_1}{m_1 + m_2}\right) v_{1i} + \left(\frac{m_2 - m_1}{m_1 + m_2}\right) v_{2i} \qquad ... \tag{4.52}$$

বিশেষ ক্ষেত্ৰসমূহ:

১. v_{1i} ও v_{2i} সমান হলে <mark>বস্তু দু</mark>টির মধ্যে কোনো সংঘর্ষ হবে না।

২. বস্তু দুটির ভর সমান <mark>হলে অর্থা</mark>ৎ $m_1=m_2$ হলে (4.50) ও (4.52) সমীকর<mark>ণ থেকে</mark> পাওয়া যায়,

$$v_{1f} = v_{2i}$$
 এবং $v_{2f} = v_{1i}$... (4.53)

সুতরাং সমান ভরের দুটি বন্তুর ম<mark>ধ্যে সংঘর্ষ হলে একটি বন্তু অপরটির বেগ প্রা</mark>প্ত হয় অর্থাৎ বন্তুদ্বয় বেগ বিনিময় করে।

৩. যদি সংঘর্ষের পূর্বে m_1 ভরের বস্তু স্থির থাকে, অর্থাৎ $v_{1i}=0$ হয় তাহলে (4.50) ও (4.52) সমীকরণ অনুসারে,

$$v_{1f} = \left(\frac{2 m_2}{m_1 + m_2}\right) v_{2i} \text{ and } v_{2f} = \left(\frac{m_2 - m_1}{m_1 + m_2}\right) v_{2i} \qquad \dots \tag{4.54}$$

এখন যদি
$$m_1 = m_2$$
 হয় তাহলে $v_{1f} = v_{2i}$ এবং $v_{2f} = 0$... (4.55)

অর্থাৎ দুটি সমান ভরের বভুর একটি যদি স্থির থাকে তাহলে সংঘর্ষের ফলে গতিশীল বভুটি থেমে যাবে এবং থেমে থাকা বস্তুটি গতিশীল বভু যে বেগে আসছিল সেই বেগ নিয়ে চলতে থাকবে।

কোনো মসৃণ তলে থেমে থাকা একটি মার্বেলকে যদি পেছন থেকে অন্য মার্বেল দিয়ে অনুভূমিকভাবে আঘাত করা যায় তাহলে থেমে থাকা মার্বেলটি আগত মার্বেলের বেগ নিয়ে চলতে থাকে এবং আগত মার্বেলটি থেমে যায়।

8. যদি স্থির বস্তুর ভর গতিশীল বস্তুর তুলনায় অনেকগুণ বেশি হয় অর্থাৎ $m_1>>m_2$ হয়, তাহলে (4.54) সমীকরণ থেকে আমরা পাই,

$$v_{1f} \simeq 0$$
 and $v_{2f} = -v_{2i}$... (4.56)

পদার্থ-১ম (হাসান) -১৭(খ)

অর্থাৎ একটি হাল্কা বস্তু যদি একটি থেমে থাকা ভারী বস্তুকে আঘাত করে তাহলে হাল্কা বস্তুটি প্রায় একই বেগে বিপরীত দিকে ফিরে আসে এবং স্থির বস্তুটি স্থিরই থেকে যায়।

একটি বলকে যদি ভূ-পৃষ্ঠের কোনো অনুভূমিক তলে ফেলা হয় তাহলে বল ও পৃথিবীর মধ্যে সংঘর্ষ ঘটে। সংঘর্ষটি যদি স্থিতিস্থাপক হয় তাহলে বলটি একই বেগে বিপরীত দিকে ফিরে আসে এবং যে উচ্চতা থেকে ফেলা হয়েছিল সেই উচ্চতায় ওঠে। ক্যারামবোর্ডে স্ট্রাইকার দিয়ে বোর্ডের বিপরীত পৃষ্ঠকে সোজাসুজি আঘাত করলে স্ট্রাইকারটি প্রায় একই বেগে বিপরীত দিকে ফিরে আসে। একই কারণে দেয়ালে কোনো বল অনুভূমিকভাবে ধাক্কা খেলে দেয়ালটির ভর যেহেতু অনেক অনেক বেশি এবং স্থির তাই বলটি একই বেগে পিছনের দিকে সরে আসে।

৫. স্থির বস্তুর ভর যদি গতিশীল বস্তুর ভরের তুলনায় নগণ্য হয়, অর্থাৎ $m_1 << m_2$ হয় তাহলে (4.54) সমীকরণ থেকে দেখা যায়,

$$v_{1f} \simeq 2v_{2i} \text{ are } v_{2f} \simeq v_{2i} \qquad ... \qquad (4.57)$$

অর্থাৎ কোনো ভারী বস্তু থেমে থাকা হাল্কা বস্তুকে আঘাত করলে ভারী বস্তুর বেগ কার্যত অপরিবর্তিত থাকে, কিন্তু হাল্কা বস্তু ভারী বস্তুটির প্রায় দ্বিগুণ বেগ নিয়ে চলতে থাকে।

মসৃণ তলে থেমে থাকা একটি মার্বেলকে ক্রিকেট বল দিয়ে আঘাত করলে ক্রিকেট বলের বেগের কোনো পরিবর্তন হবে না কিন্তু মার্বেলটি অতিদ্রুত বেগে ছিটকে যাবে।

অস্থিতিস্থাপক সংঘর্ষ (Inelastic Collision): দুটি বস্তুর মধ্যে ধাক্কা লাগলে বা সংঘর্ষ হলে যদি বস্তুগুলোর মোট গতিশক্তি সংরক্ষিত না হয় অর্থাৎ সংঘর্ষর পূর্বের ও পরের গতিশক্তি যদি সমান না হয় তাহলে সেই সংঘর্ষকে অস্থিতিস্থাপক সংঘর্ষ বলে। সংঘর্ষের পূর্বের গতিশক্তির চেয়ে পরের গতিশক্তি কম বা বেশি হতে পারে। যদি কম হয় তাহলে দুই গতিশক্তির পার্থক্যটুকু তাপ হিসেবে উদ্ভূত হয় বা সংঘর্ষের ফলে বিকৃত বস্তুর বিভব শক্তি হিসেবে আবির্ভূত হয়। আবার যদি সংঘর্ষের পরের গতিশক্তি পূর্বের গতিশক্তির চেয়ে বেশি হয় তাহলে সংঘর্ষের ফলে বিভব শক্তি মুক্ত হবে। তবে উভয় ক্ষেত্রেই ভরবেগ ও মোট শক্তি সংরক্ষিত হয়।

 m_1 ও m_2 ভরের দুটি বস্তু v_{1i} ও v_{2i} বেগে চলে পরম্পরের সাথে সংঘর্ষের ফলে পরম্পরের <mark>সাথে</mark> যুক্ত থেকে v_f বেগ নিয়ে চলতে থাকে তাহলে সংঘর্ষটি হবে <mark>একটি</mark> অস্থিতিস্থাপক সংঘর্ষ। এক্ষেত্রে,

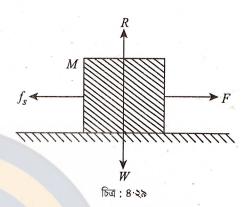
$$m_1 v_{1i} + m_2 v_{2i} = (m_1 + m_2) v_f \dots$$
 (4.58)

8-२8। घर्षे

Friction

একটি খেলনা মোটরকে মাটির ওপর গড়িয়ে দিলে যতদূর যাবে সিমেন্টের মেঝের ওপর তার থেকে বেশি দূর যাবে। আবার মসৃণ মেঝেতে পুরানো জুতা পায়ে চলতে যত সুবিধা নতুন জুতা পায়ে তত নয়। এর কারণ কী ? কোনো বস্তু আপাতদৃষ্টিতে যতই মসৃণ মনে হোক না কেন কোনো বস্তুই কিন্তু সম্পূর্ণ মসৃণ হতে পারে না। সব থেকে মসৃণ বস্তুর তলও খানিকটা উঁচু নিচু। ফলে যখন কোনো বস্তু অপর বস্তুর ওপর দিয়ে চলার চেষ্টা করে তখন বস্তু দুটির উঁচু নিচু খাঁজগুলো পরস্পরের সাথে আটকে যায়, ফলে গতি বাধাপ্রাপ্ত হয় বা ঘর্ষণের উৎপত্তি হয়। আবার বস্তুদ্বয়ের তল যে স্থানে স্পর্শ করে থাকে সে স্থানের অণুগুলো পরস্পরেক আকর্ষণ করে, এর ফলেও তলদ্বয়ের মধ্যবর্তী গতি বাধাপ্রাপ্ত হয়। যে বল দ্বারা গতি বাধাপ্রাপ্ত হয় তাকে ঘর্ষণ বল বলে।

সংজ্ঞা : দুটি বস্তু পরস্পরের সংস্পর্শে থেকে যদি একের ওপর দিয়ে অপরটি চলতে চেষ্টা করে তাহলে বস্তুদ্বয়ের স্পর্শ তলে এই গতির বিরুদ্ধে একটা বাধার উৎপত্তি হয়, এই বাধাকে ঘর্ষণ বলে।


ঘর্ষণ সাধারণত চার প্রকারের হয়ে থাকে :

- ১। স্থিতি ঘর্ষণ (Static Friction),
- ২। গতীয় ঘর্ষণ বা বিসর্প-ঘর্ষণ (Kinetic Friction or Sliding Friction),
- ৩। আবর্ত ঘর্ষণ (Rolling Friction) এবং
- ৪। প্রবাহী ঘর্ষণ (Fluid Friction)।

ঘর্ষণ বল : দুটি বস্তু পরস্পরের সংস্পর্শে থেকে যদি একের ওপর দিয়ে অপরটি চলতে চেষ্টা করে তাহলে বস্তুদ্যের স্পর্শতলে এই গতির বিরুদ্ধে যে বল উৎপন্ন হয়, তাকে ঘর্ষণ বল বলে।

8-২৫। স্থিতি ঘর্ষণ ও সীমান্তিক ঘর্ষণ Static Friction and Limiting Friction

মনে করি, M একটি কাঠের ব্লক সমতল টেবিলের ওপর আছে (চিত্র ৪-২৯) । এই অবস্থায় ব্লকের ওজন W টেবিলের ওপর খাড়া নিচের দিকে ক্রিয়া করছে এবং নিউটনের তৃতীয় সূত্রানুসারে টেবিলও ব্লকের ওপর সমান ও বিপরীত প্রতিক্রিয়া R প্রয়োগ করবে। এই অবস্থায় R ও W পরস্পর সমান ও বিপরীতমুখী হওয়ায় উভয় উভয়কে নিষ্ক্রিয় (balance) করবে। ফলে ব্লকটি স্থির থাকবে এবং কোনো ঘর্ষণ বলও থাকবে না। এখন যদি ব্লকটার ওপর টেবিলের সমান্তরাল সামান্য বল F প্রয়োগ করা হয় তা হলেও দেখা যাবে যে ব্লকে গতির সঞ্চার হচ্ছে না। যদিও R ও W টেবিলের তলের সাথে লম্ব হওয়ায়

এবং F-এর সমান্তরাল আর কোনো বল না থাকায় ব্লকে গতির সঞ্চার হওয়া উচিত ছিল। এখন F বলকে যদি আমরা ধীরে ধীরে বৃদ্ধি করতে থাকি তাহলে দেখা যাবে F-এর একটা নির্দিষ্ট মানের জন্য ব্লকটি গতিশীল হওয়ার উপক্রম হবে। এই নির্দিষ্ট মানের চেয়ে বেশি প্রয়োগ করলে ব্লকটিতে গতির সঞ্চার হবে। আমরা বলতে পারি যে, বল প্রয়োগেও ব্লকটি গতিশীল না হওয়ার কারণ ব্লক ও টেবিলের মধ্যবর্তী ঘর্ষণ বল, f_s । এখন F-এর মান যে সীমায় পৌছলে ব্লকে গতির সঞ্চার হওয়ার উপক্রম হবে সেই সীমায় বস্তুদ্বয়ের মধ্যবর্তী আপেক্ষিক গতিকে বাধাদানকারী ঘর্ষণ বলের মান স্বাধিক হবে। ঘর্ষণ বলের এই মানকে সীমান্তিক মান বা সীমান্তিক ঘর্ষণ বলে।

সংজ্ঞা; কোনো তলে<mark>র ওপ</mark>র অবস্থিত কোনো বস্তুকে গতিশীল করার জন্য বস্তুর ওপর যে বল প্রয়োগ করলে বস্তুটিতে গতির সঞ্চার হওয়া<mark>র উপক্র</mark>ম হয়, সেই সময় বস্তুদ্বয়ের মধ্যবর্<mark>তী আপে</mark>ক্ষিক গতিকে বাধাদানকারী ঘর্ষণ বলের মানকে সীমান্তিক ঘর্ষণ বল বলে।

যতক্ষণ পর্যন্ত ব্লকটি স্থির থাক<mark>ে বা ব্লক ও টেবিলের মধ্যে কোনো আপেক্ষি</mark>ক গতি না থাকে তখন বস্তুদ্বয়ের মধ্যে য ঘর্ষণ কাজ করে তাকে স্থিতি ঘর্ষণ বলে। স্থিতি <mark>ঘর্ষণের মান শূন্য থেকে সীমান্তি</mark>ক মান পর্যন্ত হতে পারে।

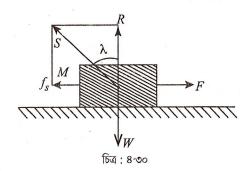
সংজ্ঞা: কোনো তল এবং এই তলের ওপর অবস্থিত কোনো বস্তুর মধ্যে আপেক্ষিক গতি সৃষ্টি না হওয়া পর্যন্ত যে ঘর্ষণ বল ক্রিয়া করে তাকে স্থিতি ঘর্ষণ বল বলে।

স্থিতি ঘর্ষণ গুণাঙ্ক

সংজ্ঞা: দুটি বস্তু পরস্পরের সংস্পর্শে থাকলে স্থিতি ঘর্ষণের সীমান্তিক মান ও অভিলম্বিক প্রতিক্রিয়ার অনুপাতকে স্থিতি ঘর্ষণ গুণাঙ্ক বলে।

স্থিতি ঘর্ষণের সীমান্তিক মান f_s এবং অভিলম্বিক প্রতিক্রিয়া R হলে স্থিতি ঘর্ষণ গুণাঙ্ক μ_s হবে,

$$\mu_s = \frac{f_s}{R} \qquad \dots \qquad \dots \tag{4.59}$$


বা, $f_s = \mu_s R$

যে কোনো দুটি তলের মধ্যবর্তী স্থিতি ঘর্ষণ গুণাঙ্কের মান সব সময় 1-এর চেয়ে ছোট হয়। মাত্রা ওএকক : একই জাতীয় দুটি রাশির অনুপাত হওয়ায় ঘর্ষণ গুণাঙ্কের কোনো মাত্রা বা একক নেই।

স্থিতি ঘর্ষণের সূত্রাবলি

দুটি অমসৃণ তলের মধ্যে যে স্থিতি ঘর্ষণ ক্রিয়া করে তা কতগুলো সূত্র মেনে চলে। এদেরকে স্থিতি ঘর্ষণের সূত্রাবলি বলা र्य।

- ১. ঘর্ষণ বল সর্বদা গতির বিরুদ্ধে ক্রিয়া করে।
- ২. স্থিতি ঘর্ষণ বলের সীমান্তিক মান অভিলম্বিক (Normal) প্রতিক্রিয়ার সমানুপাতিক।
- ৩. স্থিতি ঘর্ষণ বল স্পর্শতলের প্রকৃতির ওপর নির্ভর করে— স্পর্শ তলের ক্ষেত্রফলের ওপর নয়।

ঘৰ্ষণ কোণ

Angle of Friction

সীমান্তিক ঘর্ষণের ক্ষেত্রে অভিলম্বিক প্রতিক্রিয়া R ও <mark>ঘর্ষণ বল f ুকে সংযোজিত ক</mark>রে যে লব্ধি বল পাওয়া যায় তাকে লব্ধ প্রতিক্রিয়া বলে।

সংজ্ঞা : সীমান্তিক ঘর্ষণের ক্ষেত্রে অভিলম্বিক প্রতিক্রিয়া এবং ঘর্ষণ বলকে সংযোজন করে যে লব্ধ প্রতিক্রিয়া পাওয়া যায় সেটি অভিলম্বিক প্রতিক্রিয়ার সাথে যে কোণ উৎপন্ন করে তাকে ঘর্ষণ কোণ বলে।

ব্যাখ্যা : ৪ ৩০ চিত্রে সীমান্তিক ঘর্ষ<mark>ণ, f_c ও</mark> অভিলম্বিক প্রতিক্রিয়া, R-কে সংযোজন করে ল<mark>ব্ধ প্রতি</mark>ক্রিয়া S পাওয়া গেল। এই লব্ধ প্রতিক্রিয়া S ও অভিলম্বিক প্রতি<mark>ক্রিয়া</mark> R-এর মধ্যবর্তী কোণ λ হচ্ছে ঘর্ষণ কোণ (চিত্র ৪ ৩০)।

ঘর্ষণকোণ ও স্থিতি ঘর্ষণ গুণাঙ্কের সম্পর্ক

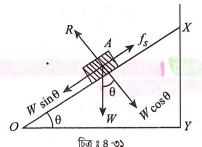
এখন,
$$R = S \cos \lambda$$
 ... (4.60)
 $f_s = S \sin \lambda$... (4.61)
আমবা জানি স্থিতি সূৰ্য্য প্ৰথম ... $f_s = S \sin \lambda$

আমরা জানি, স্থিতি ঘর্ষণ গুণান্ধ, $\mu_s = \frac{f_s}{R} = \frac{S \sin \lambda}{S \cos \lambda}$

(4.62) $\mu_s = \tan \lambda$

অর্থাৎ, ঘর্ষণ কোণের ট্যানজেন্ট স্থিতি ঘর্ষণ গুণাঙ্কের সমান।

স্থিতি বা নিশ্চল কোণ


Angle of Repose

সংজ্ঞা: অনুভূমিকের সাথে কোনো তল যে কোণ উৎপন্ন করলে আনত তলের উপরস্থ কোনো বস্তু গতিশীল হওয়ার উপক্রম হয় সেই কোণকে ঐ তলে বস্তুটির স্থিতি বা নিশ্চল কোণ বলে।

যে কোনো তলের আনতি স্থিতি কোণ পর্যন্ত হলে এই তলের ওপর বস্তু স্থির থাকবে। আনতি স্থিতি কোণ অতিক্রম করে গেলে বস্তুতে গতি সঞ্চার হবে।

ব্যাখ্যা: ৪.৩১ চিত্রে A ব্লকটি OX আনত তলের ওপর বসানো আছে। অনুভূমিক রেখার সাথে OX তলের আনতি ইচ্ছামত পরিবর্তন করা যায়। ব্লকের ওজন W ও ঘর্ষণ বল $f_{\mathfrak{g}}$ । এখন OXতলের আনতি বাড়াতে বাড়াতে যখন আনতি θ হয় তখন A ব্লকটি গতিশীল হওয়ার উপক্রম হয়। এই সীমান্তিক অবস্থায় আমরা লিখতে পারি---

$$R = W \cos \theta$$
 এবং $f_s = W \sin \theta$

∴ ঘর্ষণাঙ্ক
$$\mu_s = \frac{f_s}{R} = \frac{W \sin \theta}{W \cos \theta} = \tan \theta$$
 ... (4.63)

এখানে heta হচ্ছে OX তলে A ব্লকের স্থিতি কোণ।

(4.62) সমীকরণ থেকে আমরা জানি, $\mu_s= an\lambda$

$$\therefore \tan \theta = \tan \lambda \, \text{ all } , \, \theta = \lambda \qquad \qquad \dots \qquad \qquad \dots \qquad \qquad \dots \qquad \qquad \dots \qquad \qquad \qquad \dots \qquad \dots \qquad \qquad \dots \qquad \dots \qquad \dots \qquad \qquad \dots \qquad \dots \qquad \dots \qquad \dots \qquad \qquad \dots \qquad$$

অর্থাৎ ঘর্ষণ কোণ ও স্থিতি কোণ পরস্পর সমান। ঘর্ষণ কোণ ও স্থিতি কোণের মান সমান হলেও দুটি কিন্তু এক জিনিস নয়। স্থিতি কোণ শুধু আনত তলের বেলাতেই প্রযোজ্য কিন্তু ঘর্ষণ কোণ সমতল ও আনত তল উভয়ের বেলাতেই প্রযোজ্য।

(4.63) সমীকরণ ব্যবহার করে XY ও OY দূরত্ব পরিমাপ করে আমরা পরীক্ষামূলকভাবে ঘর্ষণ গুণান্ধ নির্ণয় করতে পারি।

৪.২৬। গতীয় ঘর্ষণ

Kinetic Friction

সংজ্ঞা দুটি স্পর্শতলের মধ্যে যখন আপেক্ষিক গতি থাকে, তখন তাদের মধ্যে যে ঘর্ষণ ক্রিয়া করে তাকে গতীয় ঘর্ষণ বলে।

পরীক্ষা করে দেখা গেছে <mark>যে, চলমা</mark>ন অবস্থায় ঘর্ষণ বল বস্তুর স্থিতি ঘর্ষণ ব<mark>লের সীমা</mark>ন্তিক মানের চেয়ে কম। গভীয় ঘর্ষণের সূত্রাবলি

- ১. <mark>গভীয় ঘর্ষণ বল অভিলম্বিক প্রতিক্রিয়ার সমানুপাতিক।</mark> এখানে ঘর্ষণ বল সীমান্তি<mark>ক ঘর্ষণ বলের চেয়ে কম।</mark>
- ২. গতীয় ঘর্ষণ বল স্প<mark>র্শতলের ক্ষেত্রফলের ওপর নির্ভর করে না, নির্ভর করে তলদ্বয়ের</mark> প্রকৃতির ওপর।
- ৩. বেগ খুব বেশি না <mark>হলে গতী</mark>য় ঘর্ষণ বল তলদ্বয়ের বেগের ওপর নির্ভরশীল নয়।

গতীয় ঘর্ষণ গুণাঙ্ক

সংজ্ঞা : কোন বস্তু যখ<mark>ন অ</mark>পর একটি বস্তুর ওপর দিয়ে স্থির বেগে চলতে থাকে গতীয় ঘর্ষণ বল এবং অভিলম্বিক প্রতিক্রিয়ার অনুপাতকে গতীয় ঘর্ষণ গুণাঙ্ক বলে।

গতীয় ঘর্ষণ বল f_k এবং অভিলম্বিক প্রতিক্রিয়া R হলে, গতীয় ঘর্ষণাঙ্ক μ_k হবে,

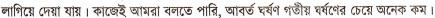
$$\mu_k = \frac{f_k}{R} \tag{4.65}$$

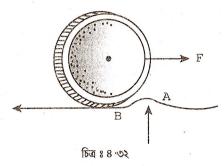
m ভরের একটি বস্তুর উপর F অনুভূমিক বলের প্রয়োগে গতিশীল হয়। যদি f_k গতীয় ঘর্ষণ বল বস্তুটির গতিতে বাধা সৃষ্টি করে তাহলে বস্তুটির ত্বরণ নিম্নোক্ত সমীকরণ থেকে পাওয়া যায়,

$$F - f_k = ma$$

বা, তুরণ, $a = \frac{F - f_k}{m}$... (4.66)

৪.২৭। আবর্ত ঘর্ষণ


Rolling Friction


সংজ্ঞা: যখন কোনো বস্তু অপর একটি তলের ওপর দিয়ে গড়িয়ে যায় তখন গতির বিরুদ্ধে যে ঘর্ষণ ক্রিয়া করে তাকে আবর্ত ঘর্ষণ বলে।

বস্তুটি যখন কোনো তলের ওপর দিয়ে গড়িয়ে যায় তখন বস্তুটির চাপে ভারবাহী তলটির খানিকটা অংশ অবনমিত হয়। ফলে গড়িয়ে চলা বস্তুর ঠিক সামনে ঐ তলের খানিকটা অংশ BA উঁচু হয়ে যায় (চিত্র ৪ ৩২) বস্তুটি যতক্ষণ গড়িয়ে চলতে থাকে ততক্ষণ এরপ উঁচু হয়ে ওঠা বাধাকে অতিক্রম করে যেতে হয় ফলে আবর্ত ঘর্ষণের উৎপত্তি হয়। বস্তুটি অপর বস্তুর ওপর দিয়ে গড়িয়ে চলার সময় যদি অভিলম্বিক প্রতিক্রিয়া R এবং আবর্ত ঘর্ষণ f_r হয় তাহলে, আবর্ত ঘর্ষণাঙ্ক,

$$\mu_r = \frac{f_r}{R} \qquad \dots \qquad (4.67)$$

আমাদের দৈনন্দিন অভিজ্ঞতা থেকেই আমরা দেখতে পাই যে, একটা বাক্সকে শুধু মেঝের ওপর দিয়ে টেনে নিতে যত কষ্ট হয় তার চেয়ে অনেক কম কষ্ট হবে যদি বাক্সের তুলায় অনেকটা রোলার

8.२४। श्रवाश घर्षन

Fluid Friction

যখন কোনো তরল পদার্থ বা বায়বীয় পদার্থের গতিপথে কোনো স্থির বস্তু রাখা হয় বা কোনো বস্তুকে তরল বা বায়বীয় পদার্থের মাঝ দিয়ে গতিশীল হতে হয় তখন উভয়ের মধ্যে ঘর্ষণ উৎপন্ন হয়। এই ধরনের ঘর্ষণকে প্রবাহী ঘর্ষণ বলে। সাধারণত জাহাজ পানিতে চলার সময়ে বা বৃষ্টির ফোঁটা বাতাসের মাঝ দিয়ে পড়ার সময়ে এই ধরনের ঘর্ষণের উৎপত্তি হয়।

৪ ২৯। ঘর্ষণের সুবিধা ও অসুবিধা

Advantage & Disadvantage of Friction

আমাদের দৈনন্দিন জীবনে ঘর্ষণ <mark>অত্যন্ত</mark> প্রয়োজনীয়। ঘর্ষণ না থাকলে আর্মরা হাঁটতে পার<mark>তাম না</mark>, পিছলে যেতাম। কাঠে পেরেক বা স্কু আটকে থাকতো না, সম্ভব হতো না দড়িতে কোনো গিঁরো দেয়া। কোনো কিছু আ<mark>মরা ধ</mark>রে রাখতে পারতাম না। ফলে সহজেই বোঝা যায়, ঘর্ষণ না থাকলে আমাদের কতটা অসুবিধার সম্মুখীন হতে হতো।

ঘর্ষণের জন্য আমাদেরকে অসুবিধাও কম পোহাতে হয় না। যন্ত্র চলার সময় গতিশীল <mark>অংশগুলোর মধ্যে ঘর্ষণ ক্রিয়া করার ফলে ক্রমশ ক্ষয়প্রাপ্ত হয়। তাছাড়া যা</mark>দ্রিক দক্ষতাও বেশ কমে যায়, আবার ঘর্ষণের ফ<mark>লে অ</mark>নাবশ্যক তাপ উৎপাদনের জন্যও যন্ত্রের ক্ষতি হয়।

এসব অসুবিধা দূর করার জন্য যন্ত্র<mark>পাতির স্পর্শ</mark>তলগুলোর মাঝে পিচ্ছিলকারী তেল বা <mark>গ্রাফাই</mark>ট ব্যবহার করে পিচ্ছিল রাখা হয়।

সমস্যা সমাধানে প্রয়োজনীয় সমীকরণসমূহ

ক্রমিক নং	সমীকরণ নং	সমীকরণ	অনুচ্ছেদ
۵	4.1	$\overrightarrow{p} = \overrightarrow{m} \overrightarrow{v}$	9.6
. 5	4.2	$\overrightarrow{F} = m \overrightarrow{a}$	8.0
৩	4.3	$\sum \overrightarrow{F} = m \overrightarrow{a}$	8.6
8	4.8	$m_1 v_{1i} + m_2 v_{2i} = m_1 v_{1f} + m_2 v_{2f}$	8.9.
Ĉ	4.11	$F = \left(\frac{\Delta m}{\Delta t}\right) v$	8.5
৬	4.16	$E = \frac{1}{2}I\omega^2$	8.50
٩	4.19	$K = \sqrt{\frac{I}{M}}$	8.30
ъ	4.22	$I = \frac{Ml^2}{12}$	8.38

৯	4.24	$I = \frac{1}{3}Ml^2$	8.38
20	4.26	$I = -\frac{1}{2}Mr^2$	8.38
22	4.32	$\overrightarrow{L} = \overrightarrow{r} \times \overrightarrow{p}$	8.\$@
75	4.33	$\overrightarrow{L} = \overrightarrow{r} \times \overrightarrow{p}$ $L = I\omega = I \frac{d\theta}{dt}$	8.50
20	4.34	$\overrightarrow{\tau} = \overrightarrow{r} \times \overrightarrow{F}$	8.১৬
78	4.36	$\tau = I\alpha = I\frac{d\omega}{dt}$	8.59
26	4.37	$F = \frac{mv^2}{r}$	8.23
১৬	4.38	$F = m\omega^2 r$	8.২১
۵۹	4.40	$\tan \theta = \frac{v^2}{rg}$	8.80
)b	4.43	$\overrightarrow{J} = \overrightarrow{F} \Delta t = \Delta \overrightarrow{P}$	8.২৩
ኔ ৯	4.50	$v_{2f} = \left(\frac{m_1 - m_2}{m_1 + m_2}\right) v_{1i} + \left(\frac{2m_2}{m_1 + m_2}\right) v_{2i}$	8.২৩
২০	4.52	$v_{1f} = \left(\frac{2m_1}{m_1 + m_2}\right) v_{1i} + \left(\frac{m_2 - m_1}{m_1 + m_2}\right) v_{2i}$	8.২৩
২১	4.58	$m_1 v_{1i} + m_2 v_{2i} = (m_1 + m_2) v_f$	8.২৩
২২	4.59	$\mu_s = \frac{f_s}{R}$	8.20
২৩	4.65	$\mu_{\kappa} = \frac{f_s}{R}$	8.26
২8	4.66	$F - f_k = ma$	8.২9

সার-সংক্ষেপ

বল: যা স্থির বস্তুর উপর ক্রিয়া করে তাকে <mark>গতিশীল করে বা করতে চায় এবং গতিশীল বস্তুর উপর ক্রিয়া করে তার</mark> গতির পরিবর্তন করে বা করতে চায় তাকে বল বলে।

নিউটনের গতিসূত্র

১ম সূত্র: বাহ্যিক বল প্রয়োগে বস্তুর অবস্থার পরিবর্তন করতে বাধ্য না করলে স্থির বস্তু চিরকাল স্থিরই থাকবে এবং গতিশীল বস্তু সমন্দ্রতিতে সরল পথে চলতে থাকবে।

২য় সূত্র : বস্তুর ভরবেগের পরিবর্তনের হার তার উপর প্রযুক্ত বলের সমানুপাতিক এবং বল যে দিকে ক্রিয়া করে বস্তুর ভরবেগের পরিবর্তনও সে দিকে ঘটে । $\Sigma \overrightarrow{F} = m \overrightarrow{a}$

৩য় সূত্র : প্রত্যেক ক্রিয়ারই একটি সমান ও বিপরীত প্রতিক্রিয়া আছে।

ভরবেগের সংরক্ষণ সূত্র : যখন কোনো ব্যবস্থার উপর প্রযুক্ত নিট বাহ্যিক বল শূন্য হয়, তখন ব্যবস্থাটির মোট ভরবেগ সংরক্ষিত থাকে।

জড়তার ভ্রামক : কোনো নির্দিষ্ট সরলরেখা থেকে কোনো দৃঢ় বস্তুর প্রত্যেকটি কণার লম্ব দূরত্বের বর্গ এবং এদের প্রত্যেকের ভরের গুণফলের সমষ্টিকে ঐ সরলরেখার সাপেক্ষে ঐ বস্তুর জড়তার ভ্রামক বলে।

$$I = \sum m_{\rm i} r_{\rm i}^2 = \int r^2 dm$$

চক্রণতির ব্যাসার্ধ: কোনো দৃঢ় বস্তুর সমগ্র ভর যদি একটি নির্দিষ্ট বিন্দুতে কেন্দ্রীভূত করা যায় যাতে করে একটি নির্দিষ্ট অক্ষের সাপেক্ষে ঐ কেন্দ্রীভূত বস্তু কণার জড়তার ভ্রামক, ঐ নির্দিষ্ট অক্ষের সাপেক্ষে সমগ্র দৃঢ় বস্তুর জড়তার ভ্রামকের সমান হয়, তাহলে ঐ নির্দিষ্ট অক্ষ থেকে কেন্দ্রীভূত বস্তু কণার লম্ব দূরত্বকে চক্রগতির ব্যাসার্ধ বলে।

কৌণিক ভরবেগ: ঘূর্ণায়মান কোনো কণার ব্যাসার্ধ ভেক্টর এবং ভরবেগের ভেক্টর গুণফলকে কৌণিক ভরবেগ বলে।

$$\overrightarrow{L} = \overrightarrow{r} \times \overrightarrow{p}$$

টর্ক: ঘূর্ণায়মান কোনো কণার ব্যাসার্ধ ভেক্টর এবং কণার উপর প্রযুক্ত বলের ভেক্টর গুণফলকে টর্ক বলে।

$$\overrightarrow{\tau} = \overrightarrow{r} \times \overrightarrow{F}$$

ছালু: একটি বস্তুর দুটি বিভিন্ন বিন্দুতে ক্রিয়াশীল সমান, সমান্তরাল ও বিপরীতমুখী বলদ্বয়কে দুদ্ধ বা যুগল বা জোড় বল বলে।

কৌণিক ভরবেগের সংরক্ষণ সূত্র: কোনো ব্যবস্থার উপর প্রযুক্ত নিট টর্ক শূন্য হলে ব্যবস্থাটির মোট কৌণিক ভরবেগ সংরক্ষিত থাকে।

কেন্দ্রমুখী বল : যখন কোনো বস্তু বৃত্তাকার পথে ঘুরতে থাকে তখন ঐ বৃত্তের কেন্দ্র অভিমুখে যে নিট বল ক্রিয়া করে বস্তুটিকে বৃত্তাকার পথে গতিশীল রাখে তাকে কেন্দ্রমুখী বল বলে।

$$F = \frac{mv^2}{r} = m\omega^2 r$$

কেন্দ্রবিমুখী বল: কোনো বস্তুকে <mark>বৃত্তাকা</mark>র পথে ঘুরাতে হলে ঐ বস্তুর উপর যে বল প্রয়ো<mark>গ করা</mark> হয় তাই হচ্ছে কেন্দ্রমুখী বল। এ বলের প্রতিক্রিয়া স্বরূপ যে <mark>বল বৃত্তের কেন্দ্রে</mark>র উপর ব্যাসার্ধ বরাবর কেন্দ্রের বাই<mark>রের দি</mark>কে ক্রিয়া করে তাকে কেন্দ্রবিমুখী বল বলে।

ঘাত বল : খুব সীমিত সময়ের জন্য খুব বড় মানের যে বল প্রযুক্ত হয় তাকে ঘাত বল বলে।

বলের ঘাত: কোনো বল ও বলের ক্রিয়াকালের গুণফলকে ঐ বলের ঘাত বলে।

সংঘর্ষ : দুটি বস্তু যদি একটা খুব <mark>বড় মা</mark>নের বলে খুব অল্প সময়ের জন্যে পরম্পরকে আ<mark>ঘাত ক</mark>রে তাহলে তাকে বলা হয় সংঘর্ষ।

স্থিতিস্থাপক সংঘর্ষ : দুটি বস্তুর মধ্যে সংঘর্ষের ফলে যদি বস্তুগুলোর মোট গতিশক্তি সংরক্ষিত থাকে তাহলে সেই সংঘর্ষকে বলা হয় স্থিতিস্থাপক সংঘর্ষ।

অস্থিতিস্থাপক সংঘর্ষ : দুটি বস্তুর মধ্যে সংঘ<mark>র্ষের ফলে যদি বস্তুগুলোর মোট গতিশ</mark>ক্তি সংরক্ষিত না থাকে তাহলে সেই সংঘর্ষকে বলা হয় অস্থিতিস্থাপক সংঘর্ষ।

গাণিতিক উদাহরণ

সেট I

[সাধারণ সমস্যাবলি]

গাণিতিক উদাহরণ ৪.১। একটি 588~N ওজনের বস্তুকে $0.70~m~s^{-2}$ ত্বরণ দিতে এর ওপর কত বল প্রয়োগ করতে হবে ?

বস্থ্য ভর
$$m$$
 হলে,
$$W = mg$$
বা, $m = \frac{W}{g} = \frac{588 \text{ N}}{9.8 \text{ m s}^{-2}}$

$$= 60 \text{ kg}$$

$$\therefore F = ma = 60 \text{ kg} \times 0.70 \text{ m s}^{-2}$$

$$= 42 \text{ N}$$
উ: 42 N

বস্তুর ওজন,
$$W = 588 \text{ N}$$
 ত্রণ, $a = 0.70 \text{ m s}^{-2}$ বল, $F = ?$ $g = 9.8 \text{ m s}^{-2}$

গাণিতিক উদাহরণ 8.২। 30 kg ভরের একটি বস্তুর ওপর কত বল প্রয়োগ করলে 1 মিনিটে এর বেগ 36 km h⁻¹ বৃদ্ধি পাবে ? খু. বি ২০১৬–২০১৭; রা. বি. ২০১৬–২০১৭; য. বি. প্র. বি. ২০১৬–২০১৭;

ই. বি. ২০০৪-২০০৫]

আমরা জানি, ত্বরণ
$$a$$
 হলে,
$$F = ma$$

$$= m \frac{\Delta v}{t}$$

$$= 30 \text{ kg} \times \frac{10 \text{ m s}^{-1}}{60 \text{ s}}$$

$$= 5 \text{ N}$$
উ: 5 N

এখানে, ভর,
$$m=30~{\rm kg}$$
 সময়, $t=1~{\rm min}=60~{\rm s}$ বেগ বৃদ্ধি, $\Delta \nu=36~{\rm km~h^{-1}}$
$$=\frac{36\times 10^3~{\rm m}}{3600~{\rm s}}$$

$$=10~{\rm m~s^{-1}}$$
 বল, $F=?$

গাণিতিক উদাহরণ ৪.৩। গাছ থেকে 2 kg এর একটি নারকেল সোজা নিচের দিকে পড়ছে। বাতাসের বাধা যদি 8.6 N হয়, তাহলে নারকেলটির তুরণ কত ?

ধরি, খাড়া নিচের দিক ধনা<mark>ত্মক।</mark> আমরা জানি, $\Sigma F = ma$

বা,
$$F_1 + F_2 = ma$$

$$19.6 \text{ N} - 8.6 \text{ N} = (2 \text{ kg}) a$$

$$\therefore a = \frac{11\text{N}}{2 \text{ kg}} = 5.5 \text{ m s}^{-2}$$

উ: 5.5 m s⁻²

এখানে, নারকেলের ভর, $m=2~{\rm kg}$ নারকেলের ওজন, $F_1=2~{\rm kg}\times 9.8~{\rm m~s^{-2}}=19.6~{\rm N}$ বাতাসের বাধা, $F_2=-8.6~{\rm N}$ ত্বণ, a=?

গাণিতিক উদাহরণ 8.8। $9.1 imes10^{-31}$ m kg ভরের একটি স্থির ইলেক্ট্রনের ওপর $1.6 imes10^{-16}$ m N বল 10^{-9} m s ধরে কাজ করে। এ সময় শেষে ইলেক্ট্রনের বেগ কত হবে নির্ণয় কর।

আমরা জানি, বস্তুর ত্বরণ a হলে,

$$v = v_o + at$$

কিন্তু
$$F = ma$$

 $= 1.76 \times 10^5 \text{ m s}^{-1}$

এখানে

ভব,
$$m = 9.1 \times 10^{-31} \text{ kg}$$

আদি বেগ,
$$v_o = 0$$

বল,
$$F = 1.6 \times 10^{-16} \text{ N}$$

সময়,
$$t = 10^{-9}$$
 s

শেষ বেগ,
$$\nu = ?$$

গাণিতিক উদাহরণ $8.4 \cdot 108 \text{ km h}^{-1}$ বেগে চলমান একটি গাড়ির চালক 45.5 m দূরে একটি বালককে দেখতে পেলেন। সাথে সাথে ব্রেক চেপে দেয়ায় বালকটির 50 cm সামনে এসে গাড়িটি থেমে গেল। গাড়িটি থামতে কত সময় লাগলো এবং এর ওপর কত বল প্রযুক্ত হলো নির্ণয় কর। আরোহীসহ গাড়ির ভর 1000 kg।

আমরা জানি, ত্বরণ
$$a$$
 হলে,
$$v = v_o + at$$
বা, $t = \frac{v - v_o}{a}$... (1)
এখন, ত্বণের জন্য
$$v^2 = v_o^2 + 2as$$
বা, $a = \frac{v^2 - v_o^2}{2s}$

$$= \frac{0 - (30 \text{ m s}^{-1})^2}{2 \times 45 \text{ m}} = -10 \text{ m s}^{-2}$$

গাড়ির আদি বেগ,
$$\nu_{\rm o}=108~{
m km}~{
m h}^{-1}$$

$$=\frac{108\times 10^3~{
m m}}{3600~{
m s}}=30~{
m m}~{
m s}^{-1}$$

শেষ বেগ, v=0

অতিক্রান্ত দূরত্ব,
$$s = 45.5 \text{ m} - 0.5 \text{ m} = 45 \text{ m}$$

গাড়ির ভর,
$$m = 1000 \text{ kg}$$

বল,
$$F=?$$

(1) সমীকরণে এই মান বসিয়ে,

$$t = \frac{0 - 30 \text{ m s}^{-1}}{-10 \text{ m s}^{-2}} = 3 \text{ s}$$

আবার.

$$F = ma$$

=
$$1000 \text{ kg} \times (-10 \text{ m} \text{ s}^{-2})$$

$$= -10^4 \text{ N}$$

भ्रणाञ्चक हिरू वाधामानकाती वल नि<mark>र्द्मण कर</mark>त ।

গাণিতিক উদাহরণ ৪.৬। 10~N এর একটি <mark>বল 2~kg ভরবিশিষ্ট একটি স্থির বস্তু</mark>র ওপর ক্রিয়া করে। যদি 4~sপর বলের ক্রিয়া বন্ধ হয়ে যায়, তবে প্রথম থেকে 8~cসকেন্ডে বস্তুটি কত দূর যাবে ?

বল প্রয়োগের জন্য বস্তুটি প্রথম $4~{
m S}$ সমত্বরণে চলবে এবং বল প্রযুক্ত না হওয়ায় প্রথম $4~{
m K}$ সেকেন্ড পরে যে বেগ হবে সেই বেগ নিয়ে পরবর্তী $4~{
m K}$ সেকেন্ড সমবেগে চলবে।

আমরা জানি.

$$s_1 = v_0 t_1 + \frac{1}{2} a t_1^2$$

কিন্তু
$$F = ma$$

$$4, a = \frac{F}{m} = \frac{10 \text{ N}}{2 \text{ kg}} = 5 \text{ m s}^{-2}$$

$$\therefore s_1 = 0 + \frac{1}{2} \times 5 \text{ m s}^{-2} \times (4 \text{ s})^2 = 40 \text{ m}$$

এখানে,

প্রথম 4 সেকেন্ডের জন্য

আদিবেগ, $v_o = 0$

বল,
$$F = 10 \text{ N}$$

ভব,
$$m=2 \text{ kg}$$

সময়,
$$t_1 = 4 \text{ s}$$

দূরত,
$$s_1 = ?$$

এই
$$4 \text{ s}$$
 পরে শেষ বেগ v হলে, $v=v_o+at_1=0+5 \text{ m s}^{-2}\times 4 \text{ s}=20 \text{ m s}^{-1}$ আমরা জানি, $s_2=vt_2=20 \text{ m s}^{-1}\times 4 \text{ s}=80 \text{ m}$

পরবর্তী
$$4 \text{ s}$$
 এর জন্য
সমবেগ, $v = 20 \text{ m s}^{-1}$
সময়, $t_2 = 4 \text{ s}$
দূরতু, $s_2 = ?$

 \therefore প্রথম থেকে 8 সেকেন্ডে অতিক্রান্ত মোট দূরত্ব, $s=s_1+s_2=40~\mathrm{m}+80~\mathrm{m}=120~\mathrm{m}$ উ: $120~\mathrm{m}$

গাণিতিক উদাহরণ $8.9 ext{ } 150 ext{ kg}$ ভরের এক ব্যক্তি $1950 ext{ kg}$ ভরের একটি গাড়ি স্থিরাবস্থা থেকে প্রথম $10 ext{ s}$ সমত্বরণে চালালেন। অতঃপর $10 ext{ minute}$ সমবেগে চালানোর পর ব্রেক চেপে $1 ext{ s}$ এর মধ্যে গাড়ি থামালেন। যাত্রা শুরুর $4 ext{ s}$ পর গাড়ির বেগ $8 ext{ m s}^{-1}$ হলে গাড়ি কর্তৃক অতিক্রান্ত মোট দূরত্ব এবং গাড়ি থামাতে প্রযুক্ত বলের মান নির্ণয় কর। $[5. ext{ cd. } 2002; \ রুয়েট 2005-2005]$

স্থির অবস্থান থেকে যাত্রা শুরুর পর যে ত্বরণে চলে গাড়িটি $4~{
m s}$ এ $8~{
m ms}^{-1}$ বেগ <mark>অর্জন</mark> করে সেই ত্বরণে প্রথম $10~{
m s}$ চলে। এই ত্বরণ a_1 হলে,

$$v = v_o + a_1 t$$

বা, 8 m s⁻¹ = 0 + $a_1 \times 4$ s
∴ $a_1 = 2$ m s⁻²

এখানে, আদি বেগ, $v_o = 0$ সময়, t = 4 s শেষ বেগ, v = 8 m s⁻¹ তুরণ, $a_1 = ?$

এই ত্বরণে প্রথম 10 s এ অতি<u>কোন্ত দূ</u>রত্ব s_1 হলে,

$$s_1 = v_0 t_1 + \frac{1}{2} a_1 t_1^2$$

= $0 + \frac{1}{2} \times 2 \text{ m s}^{-2} \times (10 \text{ s})^2$
= 100 m

এখানে,

আদি বেগ, $v_o = 0$

ত্বণ, $a_1 = 2 \text{ m s}^{-2}$

সময়, $t_1 = 10 \text{ s}$

দূরত্ব, $s_1 = ?$

এই $10~{
m s}$ পরে যে বেগ হবে সেই বেগ নিয়ে পরবর্তী $10~{
m min}$ সমবেগে চলবে। এই বেগ ν_1 হলে,

$$v_1 = v_o + a_1 t_1$$

= 0 + 2 m s⁻² × 10 s = 20 m s⁻¹

10 min এ অতিক্রান্ত দূরত্ব s2 হলে,

$$s_2 = v_1 t_2$$

= 20 m s⁻¹ × 10 × 60 s
= 12000 m

এখানে,
সমবেগ,
$$v_1 = 20 \text{ m s}^{-1}$$

সময়, $t_2 = 10 \text{ min} = 10 \times 60 \text{ s}$
দূরত্ব, $s_2 = ?$

শেষ 1 s এ অতিক্রান্ত দূরত্ব
$$s_3$$
 হলে

$$s_3 = \left(\frac{v_1 + v_2}{2}\right) t_3$$
$$= \left(\frac{20 \text{ ms}^{-1} + 0}{2}\right) \times 1 \text{ s}$$
$$= 10 \text{ m}$$

এখানে, আদি বেগ,
$$u_1=20~{
m m~s^{-1}}$$
শেষ বেগ, $u_2=0$ সময়, $t_3=1~{
m s}$

দূরত্ব, $s_3 = ?$

∴ অতিক্রান্ত মোট দূরত্ব ऽ হলে

$$s = s_1 + s_2 + s_3$$

= 100 m + 12000 m + 10 m = 12110 m

গাড়ি থামাতে প্রযুক্ত বল F এবং ত্রবণ a হলে,

$$F = ma$$

কিন্তু
$$v_2 = v_1 + at_3$$

$$0 = 20 \text{ m s}^{-1} + a \times 1 \text{ s}$$

$$\therefore a = -20 \text{ m s}^{-2}$$

∴ বল,
$$F = 2000 \text{ kg} \times (-20 \text{ m s}^{-2})$$

$$= -40000 \text{ N}$$

এখানে,

ভর,
$$m=$$
 ব্যক্তির ভর $+$ গাড়ির ভর

$$= 50 \text{ kg} + 1950 \text{ kg}$$

$$= 2000 \text{ kg}$$

ঋণাত্মক চিহ্ন গতির বিপরীতে প্র<mark>যুক্ত বল</mark> নির্দেশ করে।

উ: 12110 m; 40000 N

গাণিতিক উদাহরণ $8.b \cdot 10$ g ভরের একটি বুলেট 6 kg ভরের একটি বন্দুক থেকে 300 m s^{-1} বেগে নিক্ষিপ্ত হলো। বন্দুকটির পশ্চাৎ বেগ কত হবে ?

ধরা যাক, বুলেটের বেগের দিক ধনাত্মক।

ভরবেগের নিত্যতার সূত্র থেকে আমরা জানি,

গুলি ছোঁড়ার আগে বন্দুক ও বুলেট স্থির থাকায়,

$$MV + mv = 0$$

(6 kg)
$$V + 10 \times 10^{-3} \text{ kg} \times 300 \text{ m s}^{-1} = 0$$

বা,
$$V = -0.5 \text{ m s}^{-1}$$

এখানে.

বুলেটের ভর, $m = 10 \text{ g} = 10 \times 10^{-3} \text{ kg}$

বন্দুকের ভর, $M=6~\mathrm{kg}$

বুলেটের শেষ বেগ, $v = 300 \text{ m s}^{-1}$

বন্দুকের পশ্চাৎ বেগ, V=?

বন্দুকের বেগ ঋণাত্মক, অর্থাৎ ্বলেটের বেগ যে দিকে, রাইফেলের বেগ তার পশ্চাৎ দিকে। উ: পশ্চাৎ বেগ $0.5~{
m m~s^{-1}}$

গাণিতিক উদাহরণ 8.৯। 12~kg এবং 15~kg ভরের দুটি বস্তু পরম্পর বিপরীত দিকে যথাক্রমে $5~m~s^{-1}$ এবং $3~m~s^{-1}$ বেগে যাওয়ার পথে একে অপরকে ধাকা দিল। ধাকার পর বস্তু দুটি একত্রে যুক্ত থেকে কত বেগে চলবে ?

ধরা যাক, প্রথম বস্তু যে দিকে যায় সে দিক ধনাত্মক। ভরবেগের সংরক্ষণ সূত্র থেকে আমরা জানি, $m_1 v_{1i} + m_2 v_{2i} = (m_1 + m_2) v_f$ $12 \text{ kg} \times 5 \text{ ms}^{-1} + 15 \text{ kg} \times (-3 \text{ m s}^{-1})$ $= (12 \text{ kg} + 15 \text{ kg}) v_f$ বা, $(27 \text{ kg}) v_f = 15 \text{ kg m s}^{-1}$ $\therefore v_f = 0.556 \text{ m s}^{-1}$ $\Rightarrow: 0.556 \text{ m s}^{-1}$

এখানে, প্রথম বস্তুর ভর, $m_I=12~{
m kg}$ দ্বিতীয় বস্তুর ভর, $m_2=15~{
m kg}$ প্রথম বস্তুর ভাদি বেগ, $v_{Ii}=5~{
m m~s^{-1}}$ দ্বিতীয় বস্তুর আদি বেগ, $v_{2i}=-3~{
m m~s^{-1}}$ মিলিত হওয়ার পর তাদের বেগ, $v_f=?$

গাণিতিক উদাহরণ $8.50 \cdot 6 \text{ kg}$ ভরের একটি বস্তু 5 m s^{-1} বেগে উত্তর দিকে চলছে 1 4 kg ভরের অপর একটি বস্তু 2 m s^{-1} বেগে দক্ষিণ দিকে চলছে 1 cont এক সময় বস্তু দুটির মধ্যে সংঘর্ষের ফলে দ্বিতীয় বস্তটি 2m s^{-1} বেগে পিছিয়ে গেল; প্রথম বস্তুটির বেগ কত হবে? [কুয়েট ২০০৩-২০০8]

ধরা যাক, উত্তর দিকগামী বস্তুটির বেগ ধনাত্মক।
ভরবেগের সংরক্ষণ সূত্র থেকে আমরা জানি, $m_1 v_{1i} + m_2 v_{2i} = m_1 v_{1f} + m_2 v_{2f}$ বা, $6 \text{ kg} \times 5 \text{ m s}^{-1} + 4 \text{ kg} \times (-2 \text{ m s}^{-1})$ $= (6 \text{ kg}) v_{1f} + 4 \text{ kg} \times 2.5 \text{ m s}^{-1}$ $12 \text{ kg m s}^{-1} = (6 \text{ kg}) v_{1f}$ $\therefore v_{1f} = 2 \text{ m s}^{-1}$

এখানে, প্রথম বস্তুর ভর, $m_1=6~{\rm kg}$ দ্বিতীয় বস্তুর ভর, $m_2=4~{\rm kg}$ প্রথম বস্তুর আদিবেগ, $v_{1i}=5~{\rm m~s^{-1}}$ দ্বিতীয় বস্তুর আদিবেগ, $v_{2i}=-2~{\rm m~s^{-1}}$ দ্বিতীয় বস্তুর শেষ বগ, $v_{2f}=-2.5~{\rm m~s^{-1}}$ প্রথম বস্তুটির শেষ বগ, $v_{1f}=7$

 $m{arphi}_{lf}$ ধনাত্মক $m{arphi}_{l}$ প্রথম বস্তুটি উত্তর দিকে চলবে।

উ: 2 m s⁻¹ বেগে উত্তর দিকে চলবে।

গাণিতিক উদাহরণ 8.35। কোনো একটি সরলরেখায় 5u বেগে চলমান m ভরের একটি বস্তু একই সরলরেখায় u বেগে চলমান 5m ভরের অপর একটি বস্তুকে ধাকা দিল এবং ধাকার পর বস্তু দুটি একই দিকে যুক্ত অবস্থায় চলতে থাকল। যুক্ত অবস্থায় বস্তু দুটির বেগ কত ? ভরবেগ ও গতিশক্তি সংরক্ষিত থাকবে কী ?

[ঢা. বো. ২০১৫]

আমরা জানি,
$$m_1 v_{1i} + m_2 v_{2i} = (m_1 + m_2) v_f$$
 বা, $m \times 5 u + 5 m \times u = (m + 5 m) v_f$ বা, $10 m u = 6 m v_f$
$$v_f = \frac{10 m u}{6 m} = \frac{10}{6} u$$

এখানে, প্রথম বস্তুর ভর, $m_1=m$ দ্বিতীয় বস্তুর ভর, $m_2=5~m$ প্রথম বস্তুর আদি বেগ, $v_{1i}=5~u$ দ্বিতীয় বস্তুর আদিবেগ, $v_{2i}=u$ মিলিত হওয়ার পর তাদের বেগ, $v_f=?$

সংঘর্ষের পূর্বে বস্তুদ্বয়ের ভরবেগ
$$= m_1 v_{1i} + m_2 v_{2i}$$
 $= m \times 5u + 5 \ m \times u$ $= 5 \ m \ u + 5 \ m \ u = 10 \ m \ u$ সংঘর্ষের পরে বস্তুদ্বয়ের ভরবেগ $= (m_1 + m_2) \ v_f = (m + 5 \ m) \times \frac{10}{6} \ u$ $= 6 \ m \times \frac{10}{6} \ u = 10 \ mu$

👺 সংঘর্ষের পূর্বে ও পরে ভরবেগের পরিবর্তন হয় না

∴ ভরবেগ সংরক্ষিত হয়।

সংঘর্ষের পূর্বে গতিশক্তি
$$= \frac{1}{2} m_1 v_{1i}^2 + \frac{1}{2} m_2 v_{2i}^2$$

$$= \frac{1}{2} m \times (5 u)^2 + \frac{1}{2} (5 m) \times u^2$$

$$= \frac{25}{2} m u^2 + \frac{5}{2} m u^2 = 15 m u^2$$
সংঘর্ষের পরে গতিশক্তি
$$= \frac{1}{2} (m_1 + m_2) \times v_f^2 = \frac{1}{2} \times 6m \times \left(\frac{10}{6} u\right)^2$$

$$= 3m \times \frac{100}{36} u^2 = \frac{100}{12} m u^2 = 8.33 m u^2$$

যেহেতু সংঘর্ষের পূর্বে ও পরে গ<mark>তিশক্তি</mark> সমান নয়, সুতরাং গতিশক্তি সংরক্ষিত হয় না।

উ: $\frac{10}{6}u$, ভরবেগ সংরক্ষিত হ্<mark>য় কিন্তু</mark> গতিশক্তি সংরক্ষিত হ্য় না।

গাণিতিক উদাহরণ 8.১২। 1200 kg ভরের একটি গাড়ি 20 m s⁻¹ দ্রুতিতে চলছিল। অতঃপর গাড়িটি 800 kg ভরের একটি স্থির গাড়িকে ধাকা দিল। ধাকার পর গাড়ি দুটি একত্রিত হয়ে 120 m পিছলায়ে থেমে গেল। বাধাদানকারী বলের মান কত ?

আমরা জানি,

$$m_1 v_{1i} + m_2 v_{2i} = (m_1 + m_2) v_f$$
 বা, $1200 \text{ kg} \times 20 \text{ m s}^{-1} + 800 \text{ kg} \times 0$

$$= (1200 \text{ kg} + 800 \text{ kg}) v_f$$
 বা, $v_f = \frac{1200 \text{ kg} \times 20 \text{ m s}^{-1}}{2000 \text{ kg}} = 12 \text{ m s}^{-1}$ আবার, $v^2 = v_f^2 + 2as$

$$a = -0.6 \text{ m s}^{-2}$$

$$\therefore$$
 বাধাদানকারী বল, $F = ma = 2000 \text{ kg} \times (-0.6 \text{ m s}^{-2})$

$$= -1200 \text{ N}$$

উ: বাধাদানকারী বলের মান 1200 N.

 $\overline{4}$, 0 = $(12 \text{ m s}^{-1})^2 + 2a \times 120 \text{ m}$

এখানে,
প্রথম গাড়ির ভর, $m_1=1200~{
m kg}$ দ্বিতীয় গাড়ির ভর, $m_2=800~{
m kg}$ প্রথম গাড়ির আদিবেগ, $v_{1i}=20~{
m m~s^{-1}}$ দ্বিতীয় গাড়ির আদিবেগ, $v_{2i}=0$ মিলিত হওয়ার পর বেগ তথা মিলিত অবস্থায় আদিবেগ, $v_f=?$

মিলিত হওয়ার পর শেষ বেগ, v=0মিলিতভাবে অতিক্রান্ত দূরত্ব, s=120 m
মিলিত অবস্থায় ত্বরণ, a=?বাধাদানকারী বল, F=?

গাণিতিক উদাহরণ 8.50। মহাকাশে অবস্থিত একটি শাটল মহাকাশ যানের ভর $3\times 10^3~{\rm kg}$ এবং জ্বালানির ভর $50~{\rm kg}$ । জ্বালানি $5~{\rm kg}~{\rm s}^{-1}$ হারে ব্যবহৃতে হলে এবং $150~{\rm m}~{\rm s}^{-1}$ সুমম দ্রুতিতে নির্গত হলে শাটল যানের উপর ধাক্কা নির্ণয় কর।

আমরা জানি,
$$F = \left(\frac{\Delta m}{\Delta t}\right) v$$

$$= 5 \text{ kgs}^{-1} \times 150 \text{ m s}^{-1}$$

$$= 750 \text{ N}$$
উ: 750 N

এখানে, জ্বালানি ব্যবহারের হার, $\frac{\Delta m}{\Delta t}=5~{\rm kg~s^{-1}}$ জ্বালানির নির্গমন বেগ, $\nu=150~{\rm m~s^{-1}}$ মহাকাশ যানের উপর ধাক্কা, F=~?

গাণিতিক উদাহরণ ৪.১৪। 60 kg ভরের একজন নৃত্যশিল্পী দু'হাত প্রসারিত করে মিনিটে 20 বার ঘুরতে পারেন। তিনি একটি সঙ্গীতের সাথে তাল মেলানোর চেষ্টা করছিলেন।

- (ক) নৃত্যশিল্পীকে সঙ্গীতের সাথে <mark>ঐকতানিক হতে মিনিটে 30 বার ঘুরতে</mark> হলে জড়তার ভ্রামকদ্বয়ের তুলনা কর।
- (খ) উদ্দীপকের নৃত্যশিল্প<mark>ী পরিবর্তিত কৌণিক গতিশক্তি দ্বিগুণ হবে কী? বিশ্</mark>লেষণপূর্বক মতামত দাও।
 [ব. বো. ২০১৭]
 - (ক) আমরা জানি, কৌ<mark>ণিক ভ</mark>রবেগের সংরক্ষণশীলতার সূত্রানুসারে $I_1 \omega_1 = I_2 \omega_2$ কিন্তু $\omega_1 = \frac{2\pi}{t} \frac{N_1}{t} = \frac{2\pi \ \mathrm{rad} \times 20}{60 \ \mathrm{s}}$ $= \frac{2}{3} \pi \ \mathrm{rad} \ \mathrm{s}^{-1}$ এবং $\omega_2 = \frac{2\pi}{t} \frac{N_2}{t} = \frac{2\pi \ \mathrm{rad} \times 30}{60 \ \mathrm{s}}$

 $=\pi \text{ rad s}^{-1}$

এখানে,
প্রথম ক্ষেত্রে ঘূর্ণন সংখ্যা, $N_1=20$ দ্বিতীয় ক্ষেত্রে ঘূর্ণন সংখ্যা, $N_2=30$ সময়, t=60 s
প্রথম ক্ষেত্রে কৌণিক বেগ, $\omega_1=?$ দ্বিতীয় ক্ষেত্রে কৌণিক বেগ, ω_2 প্রথম ক্ষেত্রে জড়তার ভ্রামক $=I_1$ দ্বিতীয় ক্ষেত্রে জড়তার ভ্রামক $=I_2$ $I_1:I_2=?$

∴
$$I_1 \times \frac{2}{3}$$
 π rad s⁻¹ = $I_2 \times \pi$ rad s⁻¹
∴ $I_1 \times \frac{2}{3} = I_2$

$$\frac{I_1}{I_2} = \frac{3}{2}$$
 অর্থাৎ $I_1 : I_2 = 3 : 2$
(খ) আমরা জানি,
কৌণিক গতিশক্তি, $E = \frac{1}{2} I \omega^2$
অতএব প্রথম ক্ষেত্রে কৌণিক গতিশক্তি, $E_1 = \frac{1}{2} I_1 \ \omega_1^2$
এবং পরিবর্তিত কৌণিক গতিশক্তি, $E_2 = \frac{1}{2} I_2 \ \omega_2^2$

এখানে, প্রথম ক্ষেত্রে কৌণিক বেগ, $\omega_1=\frac{2}{3}$ π rad s⁻¹ দ্বিতীয় ক্ষেত্রে কৌণিক বেগ, $\omega_2=\pi$ rad s⁻¹ প্রথম ক্ষেত্রে জড়তার ভ্রামক $=I_1$, দ্বিতীয় ক্ষেত্রে জড়তার ভ্রামক, $I_2=\frac{2}{3}I_1$

$$\frac{E_2}{E_1} = \frac{\frac{1}{2} I_2 \omega_2^2}{\frac{1}{2} I_1 \omega_1^2}$$

$$= \frac{\frac{1}{2} \times \frac{2}{3} I_1 \times (\pi \text{ rad s}^{-1})^2}{\frac{1}{2} \times I_1 \times (\frac{2}{3} \pi \text{ rad s}^{-1})^2} = \frac{2}{3} \times \frac{9}{4} = \frac{3}{2} = 1.5$$

$$\therefore E_2 = 1.5 E_1$$

অতএব নৃত্যশিল্পীর কৌণিক গতিশক্তি 1.5 গুণ হবে দিগুণ হবে না।

উ : (ক) I_1 ঃ $I_2=3$ ঃ 2; (খ) কৌণিক গতিশক্তি দিগুণ হবে না, 1.5 গুণ হবে।

গাণিতিক উদাহরণ ৪.১৫। একটি চাকার ভর $10~{
m kg}$ এবং চক্রগতির ব্যাসার্ধ $0.5~{
m m}$ । এর জড়তার ভ্রামক নির্ণয় কর। [দি. বো. ২০১৫]

আমরা জানি.

$$I = MK^{2}$$
= 10 kg × (0.5 m)² = 2.5 kg m²

$$\stackrel{\text{We: }}{} 2.5 \text{ kg m}^{2}$$

এখানে. ভর, M = 10 kg চক্রগতির ব্যাসার্ধ, K = 0.5 mজড়তার ভামক, I = ?

ভর, $m = 6.46 \times 10^{23} \,\mathrm{kg}$

কৌণিক ভরবেগ, L = ?

আবর্তনকাল, $T = 5.94 \times 10^7 \,\mathrm{s}$

গাণিতিক উদাহরণ ৪.১৬। মঙ্গল থ্রহ সূর্যকে কেন্দ্র করে $2.28 imes 10^{11}\,\mathrm{m}$ ব্যাসার্<mark>ধের বৃ</mark>ত্তাকার পথে ঘুরে ধরে নিয়ে এর কৌণিক ভরবেগ নির্ণয় কর। মঙ্গলের ভর $6.46 imes 10^{23}\,\mathrm{kg}$ এবং আবর্তনকাল $5.94 imes 10^7\,\mathrm{s}$ ।

জড়তার ভ্রামক I এবং কৌণিক বেগ w হলে,

$$L = I\omega$$

কিন্তু, $I = mr^2$

এবং
$$\omega = \frac{2\pi}{T}$$

$$L = mr^2 \frac{2\pi}{T}$$

$$= \frac{6.46 \times 10^{23} \text{ kg} \times (2.28 \times 10^{11} \text{ m})^2 \times 2 \times \pi}{5.94 \times 10^7 \text{ s}} = 3.55 \times 10^{39} \text{ kg m}^2 \text{ s}^{-1}$$

উ: 3.55 × 10³⁹ kg m² s⁻¹

গাণিতিক উদাহরণ ৪.১৭। একটি চাকার ভর 4 kg এবং চক্রগতির ব্যাসার্ধ 25 cm। এর জড়তার দ্রামক কত ? চাকাটিতে $2 \, \mathrm{rad} \, \mathrm{s}^{-2}$ কৌণিক ত্বরণ সৃষ্টি করতে কত মানের টর্ক প্রয়োগ করতে হবে ?য. বো. ২০০০

আমরা জানি.

$$I = MK^{2}$$
= 4 kg × (0.25 m)²
= 0.25 kg m²

আবার,
$$\tau = I \alpha$$

= 0.25 kg m² × 2 rad s⁻²
= 0.5 N m

ቼ: 0.25 kg m²; 0.5 N m

এখানে.

ভর, M=4 kg

চক্রগতির ব্যাসার্ধ, K = 25 cm = 0.25 m

বুত্তাকার পথের ব্যাসার্ধ, $r = 2.28 \times 10^{11} \,\mathrm{m}$

কৌণিক ত্বরণ, $\alpha = 2 \text{ rad s}^{-2}$

জড়তার ভ্রামক, I=?

টৰ্ক, τ = ?

পদার্থ-১ম (হাসান) -১৮(ক)

গাণিতিক উদাহরণ ৪.১৮। ব্যাসার্ধ ভেক্টর $\overrightarrow{\mathbf{r}}=x\,\hat{\mathbf{i}}+y\,\hat{\mathbf{j}}+z\,\hat{\mathbf{k}}$ এবং বল ভেক্টর $\overrightarrow{\mathbf{F}}=F_x\,\hat{\mathbf{i}}+F_y\,\hat{\mathbf{j}}+F_z\hat{\mathbf{k}}$ হলে টর্ক $\overrightarrow{\mathbf{r}}$ নির্ণয় কর।

আমরা জানি,
$$\overrightarrow{\tau} = \overrightarrow{r} \times \overrightarrow{F}$$
 ব্যাসার্থ ভেক্টর, $\overrightarrow{r} = x\hat{i} + y\hat{j} + z\hat{k}$
$$= \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ x & y & z \\ F_x & F_y & F_z \end{vmatrix}$$
 বল ভেক্টর, $\overrightarrow{F} = F_x\hat{i} + F_y\hat{j} + F_z\hat{k}$ তৈক, $\overrightarrow{\tau} = ?$
$$= \hat{i} (yF_z - zF_y) + \hat{j} (zF_x - xF_z) + \hat{k} (xF_y - yF_x)$$
 উ: $\hat{i} (yF_z - zF_y) + \hat{j} (zF_x - xF_z) + \hat{k} (xF_y - yF_x)$.

গাণিতিক উদাহরণ 8.3৯। $0.1~{
m kg}$ ভর সম্পন্ন একটি পাথর খণ্ডকে $0.8~{
m m}$ দৈর্ঘ্যের সুতার সাহায্যে বৃত্তাকার পথে ঘুরানো হলো। পাথর খণ্ডটি প্রতি সেকেন্ডে $2~{
m cm}$ আবর্তন করলে সুতার টান বের কর। [কু. বো. ২০১১]

আমরা জানি,
$$F = m\omega^2 r$$

$$= 0.1 \text{ kg} \times (4 \text{ π rad s}^{-1})^2 \times 0.8 \text{ m}$$

$$= 12.63 \text{ N}$$
ত লোক বেগ, ω = 2 rev s⁻¹ = 2 × 2π rad s⁻¹ = 4π rad s⁻¹

$$(\text{কল্রমুখী বল তথা সুতার টান, } F = ?$$

গাণিতিক উদাহরণ $8.\frac{20}{10}$ 10 g ভরবিশিষ্ট একটি বস্তুকে 2 m দীর্ঘ সুতার সাহায্যে বৃত্তাকার পথে ঘুরানো হচ্ছে। বস্তুটি 3 s-এ 15টি পূর্ণ আবর্তন করলে সুতার টান নির্ণয় কর। [দি. বো. ২০১১]

আমরা জানি,
$$F = m\omega^2 r = m\left(\frac{2\pi N}{t}\right)^2 r = \frac{m\times 4\pi^2\times N^2\times r}{t^2}$$
 ভর, $m=10$ g = 10×10^{-3} kg ব্যাসার্থ, $r=2$ m রূপন সংখ্যা, $N=15$ ঘূর্পনকাল, $t=3$ s সুতার টান, $F=?$

উ: 19.74 N

গাণিতিক উদাহরণ 8.২১। বোরের হাইদ্রোজেন পরমাণুর মডেলে একটি ইলেকট্রন একটি প্রোটনের চারদিকে $5.2\times 10^{-11}~{
m m}$ ব্যাসার্ধের একটি বৃত্তাকার পথে $2.18\times 10^6~{
m m}~{
m s}^{-1}$ বেগে প্রদক্ষিণ করে। ইলেকট্রনের ভর $9.1\times 10^{-31}~{
m kg}$ হলে কেন্দ্রমুখী বলের মান কত ?

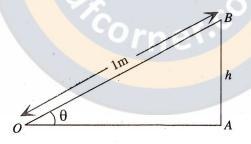
আমরা জানি,
$$F = \frac{mv^2}{r}$$

$$= \frac{9.1 \times 10^{-31} \text{ kg} \times (2.18 \times 10^6 \text{ m s}^{-1})^2}{5.2 \times 10^{-11} \text{m}}$$

$$= 8.32 \times 10^{-8} \text{ N}$$
উ: $8.32 \times 10^{-8} \text{ N}$

এখানে, ব্যাসার্ধ, $r = 5.2 \times 10^{-11}$ m বেগ, $v = 2.18 \times 10^6$ m s⁻¹ ভর, $m = 9.1 \times 10^{-31}$ kg কেন্দ্রমুখী বল, F = ?

গাণিতিক উদাহরণ ৪.২২। 75 m ব্যাসার্ধের বৃত্তাকার পথে কোনো মোটর সাইকেল আরোহী কত বৈগে খুরলে উল্লম্ব তলের সাথে 30° কোণে আনত থাকবেন নির্ণয় কর। [কু. বো. ২০১১]


আমরা জানি, $\tan \theta = \frac{v^2}{rg}$ $v^2 = rg \tan \theta$ = 75 m × 9.8 m s⁻² × tan 30° = 424.25 m² s⁻² $\therefore v = 20.6$ m s⁻¹

উ: 20.6 m s⁻¹

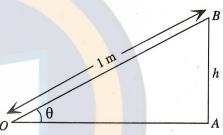
এখানে, বৃত্তাকার পথের ব্যাসার্ধ, $r=75~\mathrm{m}$ উল্লম্ব তলের সাথে আরোহীর কোণ, $\theta=30^\circ$ আরোহীর বেগ, $\nu=?$ অভিকর্ষজ ত্রণ, $g=9.8~\mathrm{m~s^{-2}}$

গাণিতিক উদাহরণ ৪.২৩। একটি রেল লাইনের বাঁকের ব্যাসার্ধ 500 m এবং রেল লাইনের পাতদয়ের মধ্যবর্তী দূরত্ব 1 m। ঘণ্টায় 54 km বেগে চলন্ত গাড়ির ক্ষেত্রে প্রয়োজনীয় ব্যাংকিং-এর জন্য বাইরের লাইনের পাতকে ভেতরের লাইনের পাত অপেক্ষা কত্টুকু উঁচু করতে হবে ?

আমরা জানি, $\tan \theta = \frac{v^2}{rg}$ বা, $\tan \theta = \frac{(15 \text{ m s}^{-1})^2}{500 \text{ m} \times 9.8 \text{ m s}^{-2}}$ বা, $\tan \theta = 0.0459$ $\therefore \theta = 2.628^{\circ}$

 $\tan \theta = \sin \theta = 0.0459$ ধরা যায়। যদি বাইরের পাতের উচ্চতা h হয় তবে, $\sin \theta = \frac{h}{OB} = \frac{h}{1 \text{ m}}$ বা, $h = \sin \theta \times 1 \text{ m} = 0.0459 \text{ m}$ = 4.59 cm

এখানে θ এর মান খুব ক্ষুদ্র বলে


উ: 4.59 cm

গাণিতিক উদাহরণ $8.48 ext{ } 1.200 ext{ } m$ ব্যাসার্ধবিশিষ্ট একটি বাঁকা পথে $50.4 ext{ } km ext{ } h^{-1}$ বেগে গাড়ি চালাতে পথিট কত কোণে কাত করে রাখতে হবে ? রাস্তাটির প্রস্থ $1 ext{ } m$ হলে, বাইরের পার্শ্ব ভেতরের পার্শ্ব অপেক্ষা কত উঁচু হতে হবে $? \ (g = 9.8 ext{ } m ext{ } s^{-2})$

আমরা জানি, $\tan \theta = \frac{v^2}{rg} = \frac{(14 \text{ m s}^{-1})^2}{200 \text{ m} \times 9.8 \text{ m s}^{-2}} = 0.1$ $\therefore \theta = 5.7^\circ$ এখানে θ এর মান খুব ক্ষুদ্র বলে $\tan \theta = \sin \theta = 0.1 \text{ ধরা যায় }$

বিষ্ণা
$$\theta = \sin \theta = 0.1$$
 বিধা বিধা
এখন, $\sin \theta = \frac{h}{OB} = \frac{h}{1 \text{ m}}$
 $\therefore h = \sin \theta \times 1 \text{ m} = 0.1 \text{ m}$
উ: 5.7°; 0.1 m

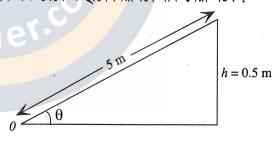
এখানে, পথের ব্যাসার্ধ, $r=200~\mathrm{m}$ গাড়ির বেগ, $v=50.4~\mathrm{km}~\mathrm{h}^{-1}=14~\mathrm{m}~\mathrm{s}^{-1}$ অভিকর্ষজ ত্বরণ, $g=9.8~\mathrm{m}~\mathrm{s}^{-2}$ রাস্তার প্রস্থ, $OB=1~\mathrm{m}$ ব্যাংকিং কোণ, $\theta=?$ ভেতরের পার্শ্ব থেকে বাইরের পার্শ্বের উচ্চতা, h=?

গাণিতিক উদাহরণ ৪.২৫। একটি রাস্তা 50 m ব্যাসার্ধে বাঁক নিয়েছে। ঐ <mark>স্থানে</mark> রাস্তাটি 5 m চওড়া এবং এর ভেতরের কিনারা হতে বাইরে<mark>র কিনা</mark>রা 0.5 m উঁচু। সর্বোচ্চ কত বেগে ঐ স্থানে নিরাপদে বাঁক নেয়া সম্ভব ?

$$\sin \theta = \frac{0.5 \text{ m}}{5 \text{ m}} = 0.1$$

∴ $\theta = \sin^{-1} (0.1)$
 $= 5.74^{\circ}$
এখানে θ –এর মান খুব ক্ষুদ্র বলে

 $\sin \theta = \tan \theta = 0.1$


নিরাপদ বাঁকের জন্য

 $\tan \theta = \frac{v^2}{rg}$

বা, $v^2 = rg \tan \theta$
 $= 50 \text{ m} \times 9.8 \text{ m s}^{-2} \times 0.1 = 49 \text{ m}^2 \text{ s}^{-2}$

∴ $v = \sqrt{49 \text{ m}^2 \text{ s}^{-2}} = 7 \text{ m s}^{-1}$

উ: 7 m s⁻¹

গাণিতিক উদাহরণ 8.29। একটি পথের A ও B দুটি স্থানে যথাক্রমে 25 m ও 36 m ব্যাসার্ধের বাঁকের প্রত্যেকটির ব্যাংকিং কোণ 10° । পথটির প্রস্থ 80 cm। (क) A স্থানের বাঁকে ভিতরের পার্শ্ব হতে বাইরের পার্শ্ব কত উঁচু হবে ? (খ) বাঁক দুটিতে কোনো গাড়ির সর্বোচ্চ গতিবেগের অনুপাত কত ? [য. বো. ২০১৫]

(ক) আমরা জানি,
$$\sin \theta = \frac{h}{d}$$

বা, $h = d \sin \theta = 0.8 \text{ m} \times \sin 10^{\circ}$
= 0.1389 m
= 13.89 cm

$$= 13.89 \text{ cm}$$
(খ) আমরা জানি, $\tan \theta = \frac{v^2}{rg}$

$$\therefore v_A^2 = \tan \theta \, r_A g$$

এবং $v_B^2 = \tan \theta \, r_B g$

$$\therefore \frac{v_A}{v_B} = \sqrt{\frac{\tan 10^{\circ} \times 25 \text{ m} \times 9.8 \text{ m s}^{-2}}{\tan 10^{\circ} \times 36 \text{ m} \times 9.8 \text{ m s}^{-2}}}$$
$$= \frac{5}{6}$$

 $\therefore v_A \circ v_B = 5 \circ 6$

উ: (ক) 13.89 cm; (খ) 5 <mark>ঃ 6</mark>

এখানে, ব্যাংকিং কোণ, $\theta=10^\circ$ রাস্তার প্রস্থ, $d=80~\mathrm{cm}=0.8~\mathrm{m}$ ভিতরের ও পার্শ্ব থেকে বাইরের পার্শ্বের উচ্চতা, h=?

আবার, এখানে, A অবস্থানে বাঁকের ব্যাসার্ধ, $r_A=25~\mathrm{m}$ B অবস্থানে বাঁকের ব্যাসার্ধ, $r_B=36~\mathrm{m}$ ব্যাংকিং কোণ, $\theta=10^\circ$

$$\frac{v_A}{v_B} = ?$$

গাণিতিক উদাহরণ $8.29 ext{ } 1\,$ $350~{
m kg}$ ভরের একটি গাড়ি $80~{
m km}~{
m h}^{-1}$ বেগে চলন্ত <mark>অবস্থা</mark>য় একটি দেয়ালকে আঘাত করে । আঘাতের পর $5 imes 10^{-3} {
m s}$ -এ স্থির হয় । (ক) বলের ঘাত (খ) সংঘর্ষে দে<mark>য়ালটি</mark> গাড়ির উপর যে গড় বল প্রয়োগ করে তা নির্ণয় কর ।

ধরি গাড়িটি যে দিকে চলছিল, সে দিক ধনাত্মক X-অক্ষ। আমরা জানি,

$$J = \Delta P$$

= $P_f - P_i$
= $m (v_f - v_i)$
= $1350 \text{ kg} \times (0 - 22.22 \text{ m s}^{-1})$
= $-3 \times 10^4 \text{ kg m s}^{-1}$
আবার, $J = \overline{F} \Delta t$
 $\therefore \overline{F} = \frac{J}{\Delta t} = \frac{-3 \times 10^4 \text{ kg m s}^{-1}}{5 \times 10^{-3} \text{ s}}$

$$F = \frac{1}{\Delta t} = \frac{1}{5 \times 10^{-3} \,\mathrm{s}}$$

$$= -6 \times 10^6 \text{ N}$$

উ: (ক)
$$-3 \times 10^4$$
 kg m s⁻¹; (খ) -6×10^6 N

এখানে,

গাড়ির ভর, $m=1350~{
m kg}$ গাড়ির আদি বেগ, $v_i=80~{
m km~h^{-1}}$ $= \frac{80\times 10^3~{
m m}}{3600~{
m s}}$ $= 22\cdot 22~{
m m~s^{-1}}$

শেষ বেগ, $v_f = 0$

সময় ব্যবধান, $\Delta t = 5 \times 10^{-3} \,\mathrm{s}$

(ক) বলের ঘাত, J = ?

(খ) গড় বল, $\overline{F}=?$

সেট II

[সাম্প্রতিক বোর্ড পরীক্ষা ও বিভিন্ন বিশ্ববিদ্যালয়ের ভর্তি পরীক্ষায় সন্নিবেশিত সমস্যাবলি]

গাণিতিক উদাহরণ 8.2৮। 30~gm ভরের একটি মার্বেল $10~m~s^{-1}$ বেগে সোজা গিয়ে একটি স্থির মার্বেলকে ধাল্লা দেয়। থাকার পর মার্বেলটি তার 75% বেগ হারায় এবং স্থির মার্বেলটি $9~m~s^{-1}$ বেগ লাভ করে স্থির অবস্থান থেকে 3~m দূরে একটি মাটির দেয়লকে ধাকা দেয়, মাটির দেয়ালের বাধাদানকারী বল 3~N। (বাজাসের বাধা উপেক্ষা করে)।

- (ক) স্থির মার্বেলটির ভর নির্ণয় কর।
- (খ) মার্বেলটি দেয়ালের ভিতর ঢুকতে পারবে কিনা গাণিতিকভাবে বিশ্লেষণ কর।

[যা. বো. ২০১৭]

(ক) আমরা জানি,

$$m_1 v_{1i} + m_2 v_{2i} = m_1 v_{1f} + m_2 v_{2f}$$

रा, $m_1 v_{1i} - m_1 v_{1f} = m_2 v_{2f} - m_2 v_{2i}$
रा, $m_1 (v_{1i} - v_{1f}) = m_2 (v_{2f} - v_{2i})$

$$\therefore m_2 = m_1 \frac{(v_{1i} - v_{1f})}{v_{2f} - v_{2i}}$$

$$= \frac{0.03 \text{ kg} \times (10 \text{ m s}^{-1} - 2.5 \text{ m s}^{-1})}{9 \text{ m s}^{-1} - 0}$$

$$= 0.025 \text{ kg} = 25 \text{ g}$$

(খ) আমরা জানি,

াজ-শক্তি উপপাদ্য অনুসা<mark>রে,</mark>

$$Fx = \frac{1}{2} mv^2 - \frac{1}{2} mv_o^2$$

$$\therefore x = \frac{m(v^2 - v_o^2)}{2F}$$

$$= \frac{0.025 \text{ kg} \times (0^2 - 9 \text{ m s}^{-1})^2}{2 \times (-3\text{N})}$$

$$= 0.3375 \text{ m} = 33.75 \text{ cm}$$

এখানে, প্রথম মার্বেলের ভর, $m_1=30~{
m g}=0.03~{
m kg}$ প্রথম মার্বেলের আদিবেগ, $v_{1i}=10~{
m m~s^{-1}}$ প্রথম মার্বেলের শেষ বেগ, $v_{1f}=\frac{10~{
m m~s^{-1}}\times25}{100}$ = $2.5~{
m m~s^{-1}}$

দ্বিতীয় মার্বেলের আদিবেগ, $v_{2i}=0~{
m m~s^{-1}}$ দ্বিতীয় মার্বেলের শেষবেগ, $v_{2f}=9~{
m m~s^{-1}}$ দ্বিতীয় মার্বেলের ভর, $m_2=?$

এখানে, মার্বেলটির আদিবেগ, $v_o=9~{
m m~s^{-1}}$ মার্বেলটির শেষ বেগ, v=0 মার্বেলটির ভর, $m=0.025~{
m kg}$ মাটির দেয়ালের বাধাদানকারী বল, $F=-3~{
m N}$ দেয়ালের মধ্যে অতিক্রান্ত দূরত্ব, x=?

উ: (ক) 25 g; (খ) মার্বেলটি দেয়ালের মধ্যে 33.75 cm প্রবেশ করবে।

গাণিতিক উদাহরণ $8.২৯ ext{ } 1 ext{ } 3 ext{ } m ext{ } s^{-1} ext{ } cেশে ext{ } 2 ext{ } kg ext{ } ভরের একটি বস্তু <math>0.5 ext{ } kg$ ভরের অন্য একটি স্থির বস্তুর সঙ্গে সোজাসুজি স্থিতিস্থাপক সংঘর্ষে পিপ্ত হয় । সংঘর্ষের পর দ্বিতীয় বস্তুর বেগ কত হবে ? $[5. ext{ } cal. ext{ } 2 ext{$

আমরা জানি,
$$v_{2f} = \left(\frac{2m_1}{m_1 + m_2}\right) v_{1i} + \left(\frac{m_2 - m_1}{m_1 + m_2}\right) v_{2i}$$

$$= \left(\frac{2 \times 2 \text{ kg}}{2 \text{ kg} + 0.5 \text{ kg}}\right) \times 3 \text{ m s}^{-1} + \left(\frac{0.5 \text{ kg} - 2 \text{ kg}}{2 \text{ kg} + 0.5 \text{ kg}}\right) \times 0$$

$$= 4.8 \text{ m s}^{-1}$$
উ: 4.8 m s^{-1}

এখানে, প্রথম বস্তুর ভর, $m_1=2~{
m kg}$ প্রথম বস্তুর ভর, $m_1=2~{
m kg}$ প্রথম বস্তুর আদিবেগ, $v_{Ii}=3~{
m m~s^{-1}}$ দ্বিতীয় বস্তুর ভর, $m_2=0.5~{
m kg}$ দ্বিতীয় বস্তুর আদিবেগ, $v_{2i}=0$ দ্বিতীয় বস্তুর শেষ বেগ, $v_{2f}=?$

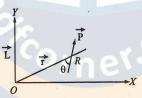
গাণিতিক উদাহরণ ৪.৩০। 8~kg ভরের একটি বস্তুকে 0.2~m লম্বা দড়ি দিয়ে একটি নির্দিষ্ট অক্ষের চারদিকে $2~rad~s^{-1}$ বেগে ঘোরানো হচ্ছে।

- (ক) ঘূর্ণায়মান কণাটির বস্তুটির কৌণিক ভরবেগ বের কর।
- (খ) বস্তুটির ভর অর্ধেক হলে টর্কের কিরূপ পরিবর্তন হবে? গাণিতিক বিশ্লেষণের মাধ্যমে ব্যাখ্যা কর। [য. বো. ২০১৬]
- (ক) আমরা জানি, কৌণিক ভরবেগ, $L = I\omega = mr^2\omega$ = 8 kg × (0.2 m)² × 2 rad s⁻¹ = 0.64 kg m² s⁻¹

এখানে, বস্তুর ভর, $m=8~{\rm kg}$ দড়ির দৈর্ঘ্য, $r=0.2~{\rm m}$ কৌণিক বেগ, $\omega=2~{\rm rad~s^{-1}}$ কৌণিক ভরবেগ, L=?

(খ) আমরা জানি, কৌণিক ত্বরণ lpha হলে,

টৰ্ক,
$$\tau = I\alpha = mr^2\alpha$$


$$au_1 = m_1 r^2 \alpha$$

আবার, $au_2 = m_2 r^2 \alpha$

$$\tau_2 = \frac{m_1}{2} \, r^2 \alpha$$

$$\therefore \frac{\tau_2}{\tau_1} = \frac{mr^2\alpha}{2 \times mr^2\alpha} = \frac{1}{2}$$

$$\therefore \ \tau_2 = \frac{\tau_1}{2}$$
 অর্থাৎ টর্ক অর্ধেক হয়ে যাবে।

উ: (ক) 0.64 kg m² s⁻¹; (খ) টক অর্থেক হবে। গাণিতিক উদাহরণ ৪.৩১।

R বিন্দুতে বস্তুর ভর, $m=2~\mathrm{kg}$

$$\overrightarrow{r} = (\hat{i} - 2\hat{j} + b\hat{k}) \text{ m}$$

$$\overrightarrow{\mathbf{v}} = (2\hat{\mathbf{i}} - 4\hat{\mathbf{j}} + 2\hat{\mathbf{k}}) \text{ m s}^{-1}$$

- (क) b=2 হলে বস্তুর কৌণিক ভরবেগের মান নির্ণয় কর।
- (খ) \overrightarrow{r} ও \overrightarrow{v} পরস্পর সমান্তরাল ও লম্ব হলে b এর মানের কিরূপ পরিবর্তন হবে—বিশ্লেষণ কর। [দি. বো. ২০১৬]

(ক) আমরা জানি, কৌণিক ভরবেগ

$$\overrightarrow{L} = \overrightarrow{r} \times \overrightarrow{p}$$

$$\overrightarrow{r} \times \overrightarrow{p} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & -2 & 2 \\ 4 & -8 & 4 \end{vmatrix}$$

এখানে, m = 2 kg $\overrightarrow{r} = (\hat{i} - 2\hat{j} + 2 \hat{k}) \text{ m} \quad [\because b = 2]$ $\overrightarrow{v} = (2\hat{i} - 4\hat{j} + 2 \hat{k}) \text{ m s}^{-1}$ $\therefore \overrightarrow{p} = \overrightarrow{m} \overrightarrow{v} = (4 \hat{i} - 8\hat{j} + 4 \hat{k}) \text{ kg m s}^{-1}$

$$= \hat{i} (-8 + 16) - \hat{j} (4 - 8) + \hat{k} (-8 + 8)$$

$$= 8\hat{i} + 4\hat{j}$$

$$\therefore |\overrightarrow{L}| = |\overrightarrow{r} \times \overrightarrow{p}| = \sqrt{8^2 + 4^2} = \sqrt{64 + 16} = \sqrt{80} = 4\sqrt{5} \text{ kg m}^2 \text{ s}^{-1}$$
(খ) যখন \overrightarrow{r} ও \overrightarrow{v} সমান্তরাল তখন $\overrightarrow{r} \times \overrightarrow{v} = \overrightarrow{0}$

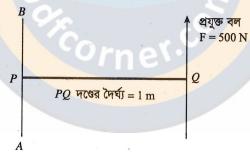
$$\therefore \overrightarrow{r} \times \overrightarrow{v} = |\overrightarrow{i} \quad \mathring{j} \quad \mathring{k} \quad | = \hat{i} (-4 + 4b) + \hat{j} (2b - 2)$$

$$| 1 \quad -2 \quad b \quad | 2 \quad -4 \quad 2$$

শর্তানুসারে,

$$\hat{i}$$
 $(-4+4b) + \hat{j}$ $(2b-2) + \hat{k}$ $(-4+4) = \overrightarrow{0}$ \hat{i} ও \hat{j} এর সহগ সমীকৃত করে,

$$-4 + 4b = 0 \qquad \therefore b = 1$$
$$2b - 2 = 0 \qquad \therefore b = 1$$


যখন \overrightarrow{r} ও \overrightarrow{v} প্রস্পারের উপর লম্ব তখন, \overrightarrow{r} . $\overrightarrow{v}=0$

$$\overrightarrow{r} \cdot \overrightarrow{v} = 1 \times 2 + (-2) \times (-4) + b \times 2 = 0$$

$$41, 2+8+2b=0$$

$$41, \ b = \frac{-10}{2} = -5$$

উ: (ক) $4\sqrt{5}$ kg m² s⁻¹; (খ) সমান্তরাল হলে b=1 এবং লম্ব হলে b=-5. গাণিতিক উদাহরণ ৪.৩২।

- (ক) \overline{AB} ঘূর্ণন অক্ষের সাপেক্ষে PQ দণ্ডটির টর্ক নির্ণয় কর।
- ্খ) যদি ঘূর্ণন অক্ষ AB, PQ দণ্ডটির প্রান্তবিন্দু হতে পরিবর্তন করে মধ্যবিন্দুতে নেওয়া হয়, তবে কোন ক্ষেত্রে জড়তার শ্রামক বেশি হবে—তোমার উত্তরের সপক্ষে গাণিতিক যুক্তি প্রদর্শন কর। [সি. বো. ২০১৫]

(ক) আমরা জানি,
টর্ক,
$$\tau = rF \sin \theta$$

= 1 m × 500 N × sin 90°
= 500 N m

এখানে,
দৈর্ঘ্য,
$$r = 1 \text{ m}$$

বল, $F = 500 \text{ N}$
কোণ, $\theta = 90^\circ$
টর্ক, $\tau = ?$

এখানে.

দণ্ডের ভর, M

ঘূর্ণন অক্ষ থেকে দূরত্ব, l=1 m

জড়তার ভ্রামক, $I_1 = ?$

জড়তার ভ্রামক, $I_2 = ?$

(খ) কোনো দণ্ডের প্রান্ত দিয়ে গমনকারী অক্ষের সাপেক্ষে জড়তার ভ্রামক, $I_1=\frac{Ml^2}{3}$

আবার ঘূর্ণন অক্ষ দণ্ডের কেন্দ্রের মধ্য দিয়ে গেলে জড়তার ভ্রামক,

$$I_2 = \frac{Ml^2}{12}$$

$$\therefore \frac{I_1}{I_2} = \frac{Ml^2}{3} \times \frac{12}{Ml^2} = 4$$

 $\therefore I_1 = 4I_2;$ অর্থাৎ প্রথম ক্ষেত্রে জড়তার ভ্রামক বেশি হবে।

উ: (ক) 500 Nm; (খ) প্রথম ক্ষেত্রে জড়তার ভ্রামক বেশি হবে।

গাণিতিক উদাহরণ ৪.৩৩। একজন সার্কাসের খেলোয়াড়, মাথার উপরে উল্লম্ব তলে কোনো বস্তুকে একটি দীর্ঘ সুতার 90 cm দূরে বেঁধে প্রতি মিনিটে 100 বার ঘুরাচ্ছেন। হঠাৎ ঘূর্ণায়মান বস্তুটির এক-তৃতীয়াংশ খুলে পড়ে গেল। এতে খেলোয়াড় ভীত না হয়ে প্রতি মিনিটে ঘূর্ণন সংখ্যা একই রাখার জন্য প্রয়োজন মতো সুতার দৈর্ঘ্য বাড়িয়ে দিলেন।

- (ক) বস্তুটি ভর কমে যাওয়ার পূর্বে এর কেন্দ্রমুখী তুরণ কত ছিল হিসাব কর।
- (খ) সার্কাসের খেলোয়াড় সুতা<mark>র দৈ</mark>র্ঘ্যের যে পরিবর্তন এনেছিলেন গাণিতিক বিশ্লেষ<mark>ণের ম</mark>াধ্যমে এর সঠিকতা হিসাব কর।

(ক) আমরা জানি,

কেন্দ্রমুখী ত্বরণ, $a=\omega^2 r$

আবার কৌণিক বেগ, $\omega = \frac{2\pi N}{t} = \frac{2\pi \times 100}{60 \text{ s}}$

 $= 10.47 \text{ rad s}^{-1}$

 $\therefore a = (10.47 \text{ rad s}^{-1})^2 \times 0.9 \text{ m}$ = 98.7 m s⁻² এখানে,

ঘূর্ণন সংখ্যা, N = 100

সময়, t = 1 min = 60 s

সুতার দৈর্ঘ্য, r = 90 cm = 0.9 m

কৌণিক বেগ, ω = ?

কেন্দ্রমুখী ত্রণ, a=?

(খ) ধরা যাক, বস্তুর ভর, $m_1 = m$ । এর এক-তৃতীয়াংশ খুলে পড়ে গেলে ভর হবে,

$$m_2 = \frac{2}{3} \,\mathrm{m}$$

1

সুতার আদি দৈর্ঘ্য, $r_1 = 0.9 \text{ m}$ বর্ধিত করার পর দৈর্ঘ্য, $r_2 = ?$

এখন কেন্দ্রমুখী বল উভয় ক্ষেত্রে একই থাকবে।

সুতরাং $F = m_1 \omega^2 r_1 = m_2 \omega^2 r_2$

$$\overline{\text{dl}}, r_2 = \frac{m_1 \omega^2 r_1}{m_2 \omega^2} = \frac{m_1 r_1}{m_2} = \frac{m}{\frac{2}{3} \text{ m}} \times 0.9 \text{ m} = \frac{3}{2} \times 0.9 \text{ m} = 1.35 \text{ m}$$

সুতার দৈর্ঘ্য $1.35~\mathrm{m}$ করতে হবে অর্থাৎ খেলোয়াড় সুতার দৈর্ঘ্য $(135~\mathrm{cm}-90~\mathrm{cm})$ বা $45~\mathrm{cm}$ বাড়িয়ে ছিলেন। উ: (ক) $98.7~\mathrm{m}~\mathrm{s}^{-2}$; (খ) খেলোয়াড় সুতার দৈর্ঘ্য $45~\mathrm{cm}$ বাড়িয়ে ছিলেন। গাণিতিক উদাহরণ ৪.৩৪।

- (ক) উদ্দীপক থেকে প্রতিক্রিয়া বল ' F_1 ' নির্ণয় কর।
- (খ) উদ্দীপকের সংঘর্ষটি স্থিতিস্থাপক না অস্থিতিস্থাপক সংঘর্ষ ? গাণিতিক বিশ্লেষণ করে তোমার মতামত দাও।

(ক) আমরা জানি,
$$F_1 = \frac{\Delta p}{t}$$

$$= \frac{m_2 v_{2f} - m_2 v_{2i}}{t}$$

$$= \frac{0.1 \text{kg} \times (-90.17 \text{ m s}^{-1}) - 0.1 \text{ kg} \times (100 \text{ m s}^{-1})}{4 \text{ s}}$$

$$= \frac{-19.017 \text{ kg m s}^{-1}}{4 \text{ s}}$$

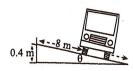
$$= -4.75 \text{ N}$$
(খ) $v_{1f} = \left(\frac{m_1 - m_2}{m_1 + m_2}\right) v_{1i} + \left(\frac{2m_2}{m_1 + m_2}\right) v_{2i}$

এখানে,

$$m_2 = 0.1 \text{ kg}$$

 $m_1 = 2.0 \text{ kg}$
 $v_{1i} = 0$
 $v_{2i} = 100 \text{ m s}^{-1}$
 $v_{1i} = 0$
 $v_{2i} = 100 \text{ m s}^{-1}$
 $v_{1i} = 0$
 $v_{2i} = 100 \text{ m s}^{-1}$
 $v_{1i} = 0$
 $v_{2i} = 100 \text{ m s}^{-1}$
 $v_{1i} = 0$

বা, $v_{1f} = 0 + \frac{2 \times 0.1 \text{ kg}}{2 \text{ kg} + 0.1 \text{ kg}} \times 100 \text{ m s}^{-1} = 9.52 \text{ m s}^{-1}$ এখন, সংঘর্ষের পূর্বে মোট গতিশক্তি,


 $E_1 = \frac{1}{2} m_1 (v_{1i})^2 + \frac{1}{2} m_2 (v_{2i})^2 = \frac{1}{2} \times 2 \text{kg} \times 0 + \frac{1}{2} \times 0.1 \text{ kg} \times (100 \text{ m s}^{-1})^2 = 500 \text{ J}$

সংঘর্ষের পরে মোট গতিশক্তি,

$$E_2 = \frac{1}{2} \times 2 \text{ kg} \times (9.52 \text{ m s}^{-1})^2 + \frac{1}{2} \times 0.1 \text{ kg} \times (90.17 \text{ m s}^{-1})^2$$

= 497.16 J

 $lacktriangle E_1
eq E_2$ \therefore সংঘর্ষটি অস্থিতিস্থাপক।

উ: (ক) 4.75 N; (খ) সংঘর্ষটি অস্থিতিস্থাপক। গাণিতিক উদাহরণ ৪.৩৫।

100~m ব্যাসার্ধের একটি বাঁকে $30~km~h^{-1}$ বেগে বাঁক নিতে গিয়ে বাস রাস্তা থেকে ছিটকে খাদে পড়ে যায়। (ক) উদ্দীপকে উল্লিখিত রাস্তায় ব্যাংকিং কোণ নির্ণয় কর।

(খ) উদ্দীপকের আলোকে বাসটি খাদে পড়ে যাওয়ার কারণ গাণিতিকভাবে বিশ্লেষণ কর। **[চ. বো. ২০১৬**]

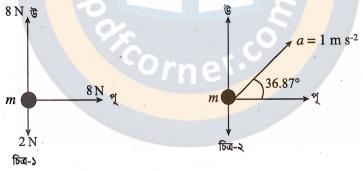
(ক) আমরা জানি,
$$\theta$$
 খুব ছোট হলে $\tan \theta = \sin \theta = \frac{h}{d}$ বা, $\theta = \sin^{-1}\frac{h}{d} = \sin^{-1}\frac{0.4}{8}$ = 2.86°

(খ) নিরাপদে গাড়ি চালানোর জন্যে ব্যাংকিং কোণ θ হলে $\tan \theta = \frac{v^2}{rg}$

$$\theta = \tan^{-1} \left(\frac{v^2}{rg} \right)$$

$$= \tan^{-1} \left\{ \frac{(8.33 \text{ m s}^{-1})^2}{100 \text{ m} \times 9.8 \text{ m s}^{-2}} \right\}$$

$$= 4.05^{\circ}$$


এখানে, bিত্রানুষায়ী, $h=0.4~{
m m}$ $d=8~{
m m}$ ব্যাংকিং কোণ, $\theta=?$

এখানে, বেগ, $\nu=30~{\rm km~h^{-1}}$ $=\frac{30\times1000}{3600}~{\rm m~s^{-1}}=8.33~{\rm m~s^{-1}}$ বাঁকের ব্যাসার্ধ, $r=100~{\rm m}$ অভিকর্ষজ তুরণ, $g=9.8~{\rm m~s^{-2}}$ ব্যাংকিং কোণ, $\theta=?$

উদ্দীপকের রাস্তায় ব্যাংকিং কোণ 2.86° কিন্তু ঐ পথে $30~{\rm km~h^{-1}}$ বেগে নিরাপদে গাড়ি চালানোর জন্যে ব্যাংকিং কোণ হওয়া প্রয়োজন ছিল 4.05° , তা<mark>ই গাড়িটি</mark> খাদে পড়ে যায়।

উ: (ক) 2.86°; (খ) ব্যাংকিং কোণ কম হওয়ায় খাদে পড়ে যাবে।

গাণিতিক উদাহরণ ৪.৩৬। m = (10 kg) ভরের একটি বস্তুর উপর একই সময়ে <mark>তিনটি বল</mark> ক্রিয়া করছে যা ১ নং চিত্রে দেখানো হলো। তিত্রি প্রশ্ন (ক সেট) ২০১৮]

- (ক) ১নং চিত্তে বস্তুটির উপর ক্রিয়াশীল নিট বলের মান কত?
- (খ) চিত্রে-১ এর আলোকে চিত্রে-২ এর সঠিকতা যাচাই কর।
- (ক) F_N ও F_S বিপরীতমুখী হওয়ায় এ দুটি বলের লন্ধি, $F_1=F_{
 m N}-F_{
 m S}=8~{
 m N}-2~{
 m N}=6~{
 m N}$

আবার, F_1 ও $F_{\rm E}$ এবং মধ্যবর্তী কোণ $90^{\rm o}$ অতএব লব্ধি বল.

$$F = \sqrt{F_1^2 + F_E^2} = \sqrt{(6 \text{ N})^2 + (8 \text{ N})^2} = 10 \text{ N}$$

এখানে, উত্তরমুখী বল, $F_N=8~{
m N}$ দক্ষিণমুখী বল, $F_S=2~{
m N}$ পূর্বমুখী বল, $F_E=8~{
m N}$ লব্ধি বল, F=?

(খ) আমরা জানি, ত্বরণ
$$a = \frac{F}{m} = \frac{10 \text{ N}}{10 \text{ kg}} = 1 \text{ m s}^{-2}$$
 ত্বরণের দিক লব্ধি বল F এর দিক বরাবর । লব্ধিবল পূর্বমুখী বলের সাথে Q কোণ উৎপন্ন করলে
$$\tan \theta = \frac{F_1 \sin \alpha}{F_E + F_1 \cos \alpha} = \frac{6 \text{ N} \times \sin 90^\circ}{8 \text{ N} + 6 \text{ N} \times \cos 90^\circ}$$
 $\therefore \theta = \tan^{-1} \frac{6}{8}$ = 36.87°

এখানে, ভর, $m=10~{\rm kg}$ বল, $F=10~{\rm N}$ ত্বন, a=? উত্তরমুখী লব্ধি বল, $F_1=6~{\rm N}$ পূর্বমুখী বল, $F_E=8~{\rm N}$ মধ্যবর্তী কোণ, $\alpha=90^\circ$

সুতরাং গাণিতিক বিশ্লেষণ থেকে দেখা যায় যে, চিত্র-১ এর আলোকে চিত্র-২ সঠিক আছে। উ: 10 N; (খ) চিত্র ১ এর আলোকে চিত্র ২ সঠিক।

গাণিতিক উদাহরণ ৪.৩৭। অপু $20~{
m m}$ ব্যাসার্ধবিশিষ্ট একটি বৃত্তাকার মাঠের চতুর্পার্শ্বে সর্বোচ্চ 30° কোণে কেন্দ্রের দিকে হেলানো অবস্থায় নিরাপদে সাইকেল চালাতে পারে। সে $20~{
m km}~{
m h}^{-1}$ বেগে সাইকেল চালাছিল।

- (ক) বৃত্তাকার পথে 5 km এর সমান পথ <u>অতিক্রম করতে কতবার মাঠ</u> প্রদক্ষিণ করতে হবে ?
- (খ) উদ্দীপকে উল্লিখিত মাঠে দি<mark>গুণ বেগে অপু ঐ পথ নিরাপদে অতিক্রম করতে</mark> পারবে। সত্যতা যাচাই কর।
 [অভিনু প্রশ্ন (ক সেট) ২০১৮]

$$(\overline{\Phi}) n = \frac{S}{2 \pi r}$$

$$= \frac{5000 \text{ m}}{2 \pi \times 20 \text{ m}} = 39.8 \text{ বার}$$

এখানে,
বৃত্তাকার পথের ব্যাসার্ধ, r = 20 mপথের দৈর্ঘ্য, S = 5 km = 5000 mঘূর্ণন সংখ্যা, n = ?

(খ) আমরা জানি,

$$\tan \theta' = \frac{v^2}{rg} = \frac{(11.11 \text{ m s}^{-1})^2}{20 \text{ m} \times 9.8 \text{ m s}^{-2}} = 0.63$$

∴ $\theta' = \tan^{-1} 0.63$
= 32.2°

 $\theta' > \theta$ সুতরাং অপু ঐ পথ নি<mark>রাপদে অতিক্রান্ত</mark> করতে পারবে না।

এখানে,
নিরাপদে সাইকেল চালানোর জন্যে উল্লম্বের সাথে
সৃষ্ট সর্বোচ্চ কোণ, $\theta=30^\circ$ সাইকেলের বেগ, $\nu=40~\mathrm{km~h^{-1}}=11.11~\mathrm{m~s^{-1}}$ বৃত্তাকার পথের ব্যাসার্ধ, $r=20~\mathrm{m}$ <mark>অভিকর্মজ ত্ব</mark>রণ, $g=9.8~\mathrm{m~s^{-2}}$ উল্লম্বের সাথে কোণ, $\theta'=?$

উ: (ক) 39.8 বার ; (খ) অপু নিরাপদে অতিক্রম করতে পারবে না।

গাণিতিক উদাহরণ 8.9b। অনুভূমিক দিকে গতিশীল 2~kg ভরের একটি লৌহ গোলক $5~m~s^{-1}$ বেগে একটি দেয়ালে লম্বভাবে ধাকা খেয়ে $3~m~s^{-1}$ বেগে বিপরীত দিকে ফিরে গেল। বলের ঘাত কত ?

[বঙ্গবন্ধু বি.প্র.বি. ২০১৫-২০১৬]

ধরি গোলকটি যেদিক চলছিল, সেদিক ধনাত্মক X-অক্ষ। আমরা জানি,

$$J = \Delta P = m (v_f - v_i)$$
= 2 kg (-3m s⁻¹ - 5 m s⁻¹)
= - 16 kg m s⁻¹

$$= -16 \text{ kg m s}^{-1}$$

এখানে, মোট গোলকের ভর, $m=2~{\rm kg}$ ধাকা লাগার আগের বেগ, $v_i=5~{\rm m~s^{-1}}$ ধাকা লাগার পরের বেগ, $v_f=-3~{\rm m~s^{-1}}$ বলের ঘাত, J=~?

গাণিতিক উদাহরণ ৪.৩৯। একটি বস্তুর উপর 7~N মানের একটি বল প্রয়োগ করা হলে বস্তুটি $3~m~s^{-2}$ ত্বরণ প্রাপ্ত হয়। বস্তুটির ভর কত ? বস্তুটির উপর 5~N মানের আর একটি বল 7~N মানের বলের সাথে 60° কোণে প্রয়োগ করা হলে বস্তুটির ত্বরণ কত হবে ?

$$F_1=m\ a_1$$
, বা, $m=rac{F_1}{a_1}=rac{7\ {
m N}}{3\ {
m m\ s}^{-2}}=2.33\ {
m kg}$ বল দুটি লব্ধি F হলে,

$$F = ma$$

বা,
$$a = \frac{F}{m}$$
(1)

কিন্তু লব্ধি বলের জন্য

এখানে,
প্রথম বল,
$$F_1=7~{
m N}$$
ত্বণ, $a_1=3~{
m m~s^{-2}}$
তব, $m=?$
দিতীয় বল, $F_2=5~{
m N}$
বলদ্বয়ের মধ্যবর্তী কোণ, $\alpha=60^\circ$
ত্বণ, $a=?$

$$F = \sqrt{F_1^2 + F_2^2 + 2F_1 F_2 \cos \alpha}$$

$$= \sqrt{(7 \text{ N})^2 + (5 \text{ N})^2 + 2 \times 7 \text{ N} \times 5 \text{ N} \times \cos 60^\circ} = 10.44 \text{ N}$$

(1) সমীকরণে এই মান বসিয়ে,

$$a = \frac{10.44 \text{ N}}{2.30 \text{ kg}} = 4.48 \text{ m/s}^{-2}$$

ቼ: 2.33 kg; 4.48 m s⁻²

গাণিতিক উদাহরণ 8.80। <mark>একটি</mark> বস্তু স্থির অবস্থায় ছিল। 16~N এর একটি বল এ<mark>র উপ</mark>র 5~s ধরে কাজ করে এবং তারপর আর কোনো কাজ ক<mark>রল না। বস্তুটি</mark> এরপর 6~ সেকেন্ডে 52~m দূরত্ব গেল। <mark>বস্তুটির</mark> ভর কত ?

[বুয়েট ২০১৬-২০১৭]

আমরা জানি, তুরণ a হলে,

$$F = ma$$
 \vec{a} , $m = \frac{F}{a}$(1)

কিন্তু বস্তুর তুরণ a অজানা।

বল প্রয়োগের পর বস্তুটি প্রথম 4 সেকেন্ড সমত্বরণে চলবে এবং বল প্রযুক্ত না হওয়ায় প্রথম 5 সেকেন্ড পর যে বেগ প্রাপ্ত হবে সেই বেগ নিয়ে পরবর্তী 6 সেকেন্ড সমবেগে চলবে।

আমরা জানি.

$$s = vt_2$$

বা, 52 m =
$$v \times 6$$
 s

$$v = 8.67 \text{ m s}^{-1}$$

এই বেগ ছিল প্রথম 5 সেকেন্ডে শেষ বেগ। আমরা জানি.

$$v = v_o + at_1$$

$$\sqrt{3}$$
, 8.67 m s⁻¹ = 0 + a × 5 s

$$\therefore a = \frac{8.67 \text{ m s}^{-1}}{5 \text{ s}} = 1.733 \text{ m s}^{-2}$$

এখানে,

শেষ 6 সেকেন্ডের জন্য

সময়,
$$t_2 = 6 \text{ s}$$

বল, F = 16 Nভর, m = ?

সমবেগ,
$$\nu = ?$$

প্রথম 5 সেকেন্ডের জন্য

সময়,
$$t_1 = 5 \text{ s}$$

আদিবেগ
$$v_o = 0$$

ত্বুরণ,
$$a = ?$$

(1) সমীকরণে মান বসিয়ে

$$m = \frac{16 \text{ N}}{1.733 \text{ m s}^{-2}} = 9.23 \text{ kg}$$

গাণিতিক উদাহরণ ৪.৪১। একটি রকেটে প্রথম 2 সেকেন্ডে এর ভরের $\frac{1}{60}$ অংশ হারায়। রকেট হতে নিক্কান্ত গ্যাসের গতিবেগ $3600~{
m m~s^{-1}}$ হলে রকেটের তুর্ণ কত ? [মা. ভা. বি.প্র.বি. ২০১৫ -২০১৬]

আমরা জানি.

রকেটের ধাকা.

$$F = \left(\frac{\Delta m}{\Delta t}\right) v - mg$$

বা,
$$ma = \left(\frac{\text{m}/60}{2 \text{ s}}\right) \times 3600 \text{ m s}^{-1} - mg$$

বা,
$$a = \frac{1}{120 \text{ s}} \times 3600 \text{ m s}^{-1} - 9.8 \text{ m s}^{-2}$$

= 20.2 m s⁻²

উ: 20.2 m s⁻²

এখানে, গ্যাসসহ রকেটের ভর = mনির্গত গ্যাসের ভর, $\Delta m = m/60$ গ্যাসের নির্গমন বেগ, $\nu = 3600 \text{ m s}^{-1}$ সময়, $\Delta t = 2 \text{ s}$ অভিকর্মজ তুরণ, $g = 9.8 \text{ m s}^{-2}$ রকেটের তুরণ, a = ?

গাণিতিক উদাহরণ ৪.৪<mark>২। 70</mark> kg ভরের বাক্সকে 500 N অনুভূমিক <mark>বলে মেঝের ওপর দিয়ে টানা হচ্ছে।</mark> বাক্সটি যখন চলে তখন বাক্<mark>স ও মে</mark>ঝের মধ্যবর্তী ঘর্ষণ সহগ 0.50। বাক্সের ত্বর<mark>ণ নির্ণ</mark>য় কর।

রা. বো. ২০০৭; য. বো. ২০০৪<mark>; সি. বো. ২০০৯; দি. বো. ২০০৯</mark>]

এখানে.

বাজের ভর, $m=70~\mathrm{kg}$

আমরা জানি,

 $F - f_k = ma$

আবার.

$$\mu_k = \frac{f_k}{R}$$

$$\therefore f_k = \mu_k \times R = 0.5 \times 686 \text{ N}$$
$$= 343 \text{ N}$$

$$\therefore a = \frac{F - f_k}{m} = \frac{500 \text{ N} - 343 \text{ N}}{70 \text{ kg}}$$

 $= 2.24 \text{ m s}^{-2}$

গতীয় ঘর্ষণ সহগ, $\mu_k = 0.50$

গতীয় ঘর্ষণ বল, $f_{\nu} = ?$

বাক্সের ওপর প্রযুক্ত বল, F = 500 N

তলের অভিলম্বিক প্রতিক্রিয়া = বাক্সের ওজন

= 686 N

 $\therefore R = 70 \text{ kg} \times 9.8 \text{ m s}^{-2}$

বাব্দের তুরণ, a = ?

উ: 2.24 m s⁻²

গাণিতিক উদাহরণ 8.80। কোনো মেঝেতে স্থাপিত 400~
m N এর একটি কাঠের ব্লকের ওপর অনুভূমিকভাবে 160 N বল প্রয়োগ করলে এটি চলার উপক্রম হয়। মেঝে ও কাঠের ব্লকের মধ্যবর্তী ঘর্ষণাঙ্ক নির্ণয় কর।

আমরা জানি,

$$\mu_s = \frac{f_s}{R}$$

$$=\frac{160 \text{ N}}{400 \text{ N}}$$

$$= 0.4$$

উ: 0.4

এখানে.

তলের অভিলম্বিক প্রতিক্রিয়া = বস্তুর ওজন

$$\therefore R = 400 \text{ N}$$

স্থিতি ঘর্ষণ বল, $f_s = 160 \text{ N}$ স্থিতি ঘর্ষণাঙ্ক, $\mu_s = ?$

গাণিতিক উদাহরণ 8.88। একটি সিলিভারের ভর 50~kg এবং ব্যাসার্থ 0.20~m। সিলিভারটির অক্ষের সাপেক্ষে এর জড়তার ভ্রামক $1.0~kg~m^2$ । সিলিভারটি যখন $2~m~s^{-1}$ বেগে অনুভূমিকভাবে গড়াতে থাকে তখন তার মোট গতিশক্তি কত হবে ?

েকৌণিক বেগ
$$\omega$$
 হলে,
$$\omega = \frac{v}{r} = \frac{2 \text{ m s}^{-1}}{0.20 \text{ m}} = 10 \text{ rad s}^{-1}$$
 অখানে,
$$\omega = \frac{v}{r} = \frac{2 \text{ m s}^{-1}}{0.20 \text{ m}} = 10 \text{ rad s}^{-1}$$
 অগানে,
$$\kappa = \frac{1}{2} m v^2 + \frac{1}{2} I \omega^2$$
 অগ্নেন গতিশক্তি ব্যাসার্থ, $r = 0$ জড়তার ভ্রামক বেগ, $v = 2$ n মোট গতিশক্তি
$$= \frac{1}{2} \times 50 \text{ kg} \times (2 \text{ m s}^{-1})^2 + \frac{1}{2} \times 1.0 \text{ kg m}^2 \times (10 \text{ rad s}^{-1})^2$$

থানে,
ভর,
$$m=50~{
m kg}$$
ব্যাসার্থ, $r=0.20~{
m m}$
জড়তার ভ্রামক, $I=1.0~{
m kg}~{
m m}^2$
বেগ, $v=2~{
m m}~{
m s}^{-1}$
মোট গতিশক্তি, $K=~?$

= 150 J

উ: 150 J

গাণিতিক উদাহরণ 8.8ℓ । একটি দ্বি<mark>-পারমাণ</mark>বিক অক্সিজেন অণু বিবেচনা কর। এই অণুটি তার কেন্দ্র দিয়ে দৈর্ঘ্যের সাথে লম্বভাবে অতিক্রমকারী Z অক্ষের সাপেক্ষে XY সমতলে ঘূর্ণনশীল। দুটি অক্সিজেন পরমাণুর গড় দূরত্ব $1.21\times 10^{-10}\,\mathrm{m}$ এবং প্রত্যেকটি পরমাণুর ভর $2.77\times 10^{-26}\,\mathrm{kg}$ হলে Z অক্ষের সাপেক্ষে অণুটির জড়তার শ্রামক নির্ণয় কর। Z অক্ষের সাপেক্ষে কৌণিক বেগ $2.0\times 10^{12}\,\mathrm{rad\,s^{-1}}$ হলে অণুটির <mark>ঘূর্ণন গ</mark>তিশক্তি কত ?

সমাধান : Z অক্ষ থেকে প্রত্যেকটি প্রমাণুর দূরত্ব $\frac{d}{2}$ বলে $I = \Sigma m_{\rm i} r_{\rm i}^2 = m \left(\frac{d}{2}\right)^2 + m \left(\frac{d}{2}\right)^2$ $= \frac{md^2}{2}$ কৌণিক বেগ, $\omega = 2.0$ জড়তার ভ্রামক, I = ? ত্ত্রের সাবার, $K = \frac{1}{2} I\omega^2 = \frac{1}{2} (2.03 \times 10^{-46} \, {\rm kg m^2})$ এখানে, দুটি প্রমাণুর দূরত্ব, d = 2.0 জড়তার ভ্রামক, I = ? ত্ত্রিন গতিশক্তি, K = ?

এখানে, দুটি পরমাণুর দূরত্ব, $d=1.21\times 10^{-10}\,\mathrm{m}$ প্রত্যেকটি পরমাণুর ভর, $m=2.77\times 10^{-26}\,\mathrm{kg}$ কৌণিক বেগ, $\omega=2.0\times 10^{12}\,\mathrm{rad\ s^{-1}}$ জড়তার ভ্রামক, I=? ঘূর্ণন গতিশক্তি, K=?

আবার, $K = \frac{1}{2} I\omega^2 = \frac{1}{2} (2.03 \times 10^{-46} \text{ kg m}^2) (2.0 \times 10^{12} \text{ rad s}^{-1})^2$ = $4.06 \times 10^{-22} \text{ J}$

উ: $2.03 \times 10^{-46} \text{ kg m}^2$; $4.06 \times 10^{-22} \text{ J}$

গাণিতিক উদাহরণ $8.8 ext{৬}$ । $7 ext{ m}$ উঁচু হতে $2 ext{ kg}$ ভরের একটি পিতলের নিরেট গোলক একটি তলে গড়াতে গড়াতে ভূমিতে এসে পড়ে। ভূমি স্পর্শ করার মুহূর্তে গোলকটির ভরকেন্দ্রের গতিশক্তি ও কৌণিক গতিশক্তি কত ছিল $? [g = 9.8 ext{ m s}^{-2}]$

এখানে গোলকটির ভূমি স্পর্শ করার মুহূর্তে মোটশক্তি = গোলকটির বিভব শক্তি ভার্থাৎ $E=mgh=2~{
m kg}\times 9.8~{
m m~s^{-2}}\times 7~{
m m}$ =137.2 ${
m J}$ নিরেট গোলকের জড়তার ভ্রামক ${
m I}$ হলে, ${
m I}=\frac{2}{5}Mr^2$

এখানে, গোলকের ভর, $m=2~{\rm kg}$ উচ্চতা, $h=7~{\rm m}$ অভিকর্ষজ ত্বরণ, $g=9.8~{\rm m~s^{-2}}$ গতিশক্তি, K=~?

গোলকের মোট শক্তি, E= গোলকের রৈখিক গতিশক্তি + ঘূর্ণন গতিশক্তি \cdot গোলকটির রৈখিক বেগ ν এবং কৌণিক বেগ ω হলে

$$E = \frac{1}{2} mv^2 + \frac{1}{2} I\omega^2$$

বা, $E = \frac{1}{2} mv^2 + \frac{1}{2} \times \frac{2}{5} mr^2\omega^2$
বা, $E = \frac{1}{2} mv^2 + \frac{2}{5} mv^2 = \frac{7}{10} mv^2$
বা, $137.2 \text{ J} = \frac{7}{10} mv^2$
 $\therefore mv^2 = 196 \text{ J}$
 \therefore রৈথিক গতিশক্তি $= \frac{1}{2} mv^2 = 98 \text{ J}$

সুতরাং ঘূর্ণন গতিশক্তি = মোট গতিশক্তি - রৈখিক গতিশক্তি = 137.2 J - 98 J = 39.2 J

উ: 98 J; 39.2 J

গাণিতিক উদাহরণ 8.89। একটি ঘূর্ণনরত কণার ব্যাসার্ধ ভেক্টর $\overrightarrow{r}=(2\hat{i}+2\hat{j}-\hat{k})$ m এবং প্রযুক্ত বল $\overrightarrow{F}=(6\hat{i}+3\hat{j}-3\hat{k})$ N হলে টর্কের মান কত ?

আমরা জানি,
$$\overrightarrow{\tau} = \overrightarrow{r} \times \overrightarrow{F}$$

$$= \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ r_x & r_y & r_z \\ F_x & F_y & F_z \end{vmatrix} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & 2 & -1 \\ 6 & 3 & -3 \end{vmatrix}$$

$$= \hat{i} (-6+3) - \hat{j} (-6+6) + \hat{k} (6-12)$$

$$\overrightarrow{\tau} = (-3 \hat{i} - 6 \hat{k}) N m$$

$$\therefore |\overrightarrow{\tau}| = \sqrt{(-3)^2 + (-6)^2} = \sqrt{45} N m$$

$$\overrightarrow{\mathfrak{B}}: \sqrt{45} N m$$

এখানে, ব্যাসার্ধ ভেক্টর,
$$\overrightarrow{r}=(2\hat{i}+2\hat{j}-\hat{k})$$
 m বল, $\overrightarrow{F}=(6\hat{i}+3\hat{j}-3\hat{k})$ N টক, $|\overrightarrow{\tau}|=?$

গাণিতিক উদাহরণ 8.8b। একটি বস্তু কোনো তলের উপর দিয়ে $36~{
m km}~{
m h}^{-1}$ বেগে পিছলিয়ে চলতে চলতে স্থির হয়ে এলো। বস্তু এবং তলের ঘর্ষণ গুণাঙ্ক 0.2 হলে বস্তু কর্তৃক অতিক্রান্ত দূরত্ব কত ? [বুয়েট ২০০৯–২০১০]

আমরা জানি,
ঘর্ষণ বল, $F_k = \mu_k R$ $\therefore ma = F_k = \mu_k mg$ বা, $a = \mu_k g$ আবার, $v^2 = v_o^2 - 2 as$ বা, $s = \frac{v_o^2 - v^2}{2a}$ $= \frac{(10 \text{ m s}^{-1})^2 - 0}{2 \times \mu_k g}$ $= \frac{(10 \text{ m s}^{-1})^2}{2 \times 0.2 \times 9.8 \text{ m s}^{-2}} = 25.51 \text{ m}$

আদিবেগ, $v_{\circ}=36~\mathrm{km~h^{-1}}=10~\mathrm{m~s^{-1}}$ শেষ বেগ, v=0 ঘর্ষণ গুণাঙ্ক, $\mu_{k}=0.2$ বস্তুর ভর, =m অভিকর্ষজ ত্বগ, $g=9.8~\mathrm{m~s^{-2}}$ অভিলম্বিক প্রতিক্রিয়া, R=mg বস্তুটির মন্দন =a অতিক্রান্ত দূরত্ব, s=?

উ: 25.51 m

গাণিতিক উদাহরণ 8.8৯। $200~{
m kg}$ ভরের একখানি স্থিরভাবে ভাসমান ভেলার দুই বিপরীত প্রান্তে দুজন সাঁতারু দাঁড়িয়ে আছেন। তাদের ভর যথাক্রমে $40~{
m kg}$ ও $70~{
m kg}$ । যদি সাঁতারুদ্বয় প্রত্যেকে এক সাথে $4~{
m m~s^{-1}}$ অনুভূমিক বেগে ভেলা থেকে ঝাঁপ দেন তাহলে ভেলাটি কোন দিকে কত বেগে গতিশীল হবে ?

সমাধান : ধরা যাক, প্রথম সাঁতারু যে দিকে লাফ দেন সেদিকে বেগ ধনাত্মক। ভরবেগের নিত্যতার সূত্র থেকে আমরা জানি, $m_1 v_{1i} + m_2 v_{2i} + m_3 v_{3i} = m_1 v_{1f} + m_2 v_{2f} + m_3 v_{3f}$ বা, $0+0+0=40~{\rm kg}\times 4~{\rm m~s^{-1}}$ দিতীয় সাঁতারুর বি, $0=-120~{\rm kg}~{\rm m~s^{-1}}+(200~{\rm kg})~v_{3f}$ বা, $0=-120~{\rm kg}~{\rm m~s^{-1}}+(200~{\rm kg})~v_{3f}$ মাঁপ দেয়ার তা প্রথম সাঁতারুর

এখানে,
প্রথম সাঁতারুর ভর, $m_1=40~{\rm kg}$ দিতীয় সাঁতারুর ভর, $m_2=70~{\rm kg}$ ভেলার ভর, $m_3=200~{\rm kg}$ ঝাঁপ দেয়ার আগে
প্রথম সাঁতারুর বেগ, $v_{1i}=0$ দিতীয় সাঁতারুর বেগ, $v_{2i}=0$ ভেলার বেগ, $v_{3i}=0$ ঝাঁপ দেয়ার পর
প্রথম সাঁতারুর বেগ, $v_{1f}=4~{\rm m~s^{-1}}$ দিতীয় সাঁতারুর বেগ, $v_{2f}=-4~{\rm m~s^{-1}}$ ভিলার বেগ, $v_{3f}=?$

ভেলার বেগ ধনাত্মক, অর্থাৎ প্রথম সাঁতারু যে দিকে ঝাঁপ দেন ভেলাটি সে দিকে $0.6~{
m m~s^{-1}}$ বেগে গতিশীল হবে। উ: ভেলাটি $40~{
m kg}$ ভরের সাঁতারু যে দিকে ঝাঁপ দেন সে দিকে $0.6~{
m m~s^{-1}}$ বেগে গতিশীল হবে।

अनुभी ननी

ক-বিভাগ: বহুনির্বাচনি প্রশ্ন (MCQ)

•	()				
21	$10~\mathrm{kg}$ ভরের কোনো বস্তু $12~\mathrm{m~s^{-1}}$ বেগে গতিশীল হলে তার ভরবেগ হবে—				
	(₹) 12 kg m s ⁻¹	0	(খ) 10 kg m s ⁻¹	0	
	(키) 120 kg m s ⁻¹	0	(₹) 1.2 kg m s ⁻¹	0	
२।	$10\mathrm{kg}$ ভরের একটি স্থির বস্থুর উপর 100	N বল প্র	য়োগ করলে ত্বরণ হবে—		
	(季) 100 m s ⁻²	0	(켁) 10 m s ⁻²	0	
	(গ) 1000 m s ⁻²	0	(₹) 0.1 m s ⁻²	0	
७।	নিচের কোনটি বলের একক প্রকাশ করে ?				
	(조) N m	0	(켁) N m ⁻¹	0	
	(গ) kg m s ⁻¹	0	(₹) kg m s ⁻²	0	
8	বলের মাত্রা কোনটি ?				
	(本) MLT ⁻²	0	(뉙) ML-2T-1	0	
	(গ) MLT-1	0	(되) M ⁻¹ LT ⁻²	0	

পদার্থ-১ম (হাসান) -১৯(ক)

সঠিক/সর্বোৎকষ্ট উত্তরের বত্ত (৯) ভবাট কব

د ا	যখন কোনো ব্যবস্থার উপর প্রযুক্ত মোট ব	াহ্যিক বল	শূন্য হয় তখন নিচের কোন রাশিটির ৫	কানো পরিবর্তন হয় না ?			
	(ক) ব্যবস্থার বলের ঘাত	0	(খ) ব্যবস্থার কৌণিক ভরবেগ	0			
	(গ) ব্যবস্থার রৈখিক ভর বেগ	0	(ঘ) কোনোটিই নয়	0			
৬।	20 m s ⁻¹ বেগে চলমান 1000 kg ভ	রর একটি	ট্রাক 1500 kg ভরের একটি স্থির ট্র	ীককে ধাক্কা দিয়ে একসাথে			
	যুক্ত হয়ে যে বেগে চলতে থাকবে তা হ						
	(季) 12.5 m s ⁻¹	0	(켁) 10 m s ⁻¹	0			
	(対) 8 m s ⁻¹	0	(घ) 7.5 m s ⁻¹	0			
۹ ۱	একটি বল 4 kg ভরের স্থির বস্তুর উপর	ক্রিয়া করা	য় বস্তু 6 সেকেন্ডে 30 m s ⁻¹ বেগ প্র	প্তি হয়। বলের মান কত ?			
	(季) 30 N	0	(학) 20 N	0			
	(গ) 18 N	0	(ঘ) কোনোটিই নয়	0			
ъ١	কোনো বস্থুর জড়তার ভ্রামক নির্ভর করে	এর— [<mark>বঙ্গবন্ধু বি.প্র.বি. ২</mark> ০১৬–২০১৭; য.বে	া. ২০১৫; সি. বো. ২০১৬]			
	(ক) ভর এবং ঘূর্ণন অক্ষের <mark>উপর</mark>	0	(খ) <mark>আয়তনের উপর</mark>	0			
	(গ) কৌণিক বেগের উ <mark>পর</mark>	0	(ঘ) কৌণিক <mark>ভরবেগের</mark> উপর	Ο			
৯।	ক্রিয়া-প্রতিক্রিয়ার মধ্যে কোণ কত ?			[ঢা. বো. ২০১৬]			
	(本) 0°	0	(박) 90°	0			
	(গ) 180°	0	(ঘ) 360°	0			
301	সমকৌণিক বেগে <mark>আবর্ত</mark> নরত কোন দৃঢ়	বস্তুর গতি	শক্তি ও জড়তার ভ্রামকের <mark>অনুপা</mark> ত—	[ব. বো. ২০১৬]			
	(ক) কৌণিক বেগে <mark>র সমা</mark> নুপাতিক	0	(খ) কৌণিক বেগের <mark>বর্গের</mark> সমানু				
	(গ) রৈখিক বেগের <mark>সমানু</mark> পাতিক	0	(ঘ) রৈখিক বেগের <mark>বর্গের</mark> ব্যস্তানু	পাতিক ০			
22 1	জর্ড়তার ভ্রামকের এ <mark>কক কো</mark> নটি ?	0	(뉙) kg m ⁻¹				
	(*) kg m (*) kg m ⁻²	0	(₹) kg m²				
५ २।	জড়তার ভ্রামকের মাত্রা কোনটি ?			[মাদ্রাসা বোর্ড ২০১৮]			
	(本) ML ²	0	(খ) ML ² T ⁻²	0			
ر ا ود	(গ) M ² LT ⁻¹ কোনো দৃঢ় বস্তুর চক্রগতির ব্যাসার্ধ কো	্ বটি ?	(च) ML ² T ⁻³				
201	7	0	(খ) $K = \frac{M}{I}$	0			
	$(\overline{\Phi}) K = \frac{1}{M}$		•				
	(গ) $K = \sqrt{\frac{I}{M}}$	0	$(\overline{Y}) \ K = \sqrt{\frac{M}{I}}$	0 , ,			
• • •	একটি চাকার জড়তার ভ্রামক 5 kg n			বতে চাকাটিকে কত কৌণিক			
\$81	বেগে ঘুরতে হবে ?	[য. বো. ২০১৫]					
	$(\bar{\Phi})$ 10 rad s ⁻¹	0	(켁) 20 rad s ⁻¹	0			
	(গ) 100 rad s ⁻¹	0	(₹) 200 rad s ⁻¹	0			
3 & 1	একটি চাকার জড়তার ভ্রামক 10 kg m²। চাকাটিতে 10 rad s-2 কৌণিক ত্বরণ সৃষ্টি করতে কত টর্ক প্রয়ো						
•4 1	করতে হবে ?	[य. (या. २०३७)					
	(조) 10 N m	0	(খ) 100 N m	0			
	(গ) 150 N m	0	(되) 200 N m	O (%)			
				পদার্থ-১ম (হাসান) -১৯(খ)			

১৬।	একটি সরু সুষম দণ্ডের দৈর্ঘ্য 2 m এ কোনো অক্ষের সাপেক্ষে এর জড়তার ভ্র	বং ভর 12 ামক—	kg। এর মধ্যবিন্দু দিয়ে	এর দৈর্ঘ্যের সাথে লম্বভাবে গমনকারী
	(本) 12 kg m ²	0	(켁) 24 kg m²	0
	(গ) 4 kg m ²	0	(ঘ) 2 kg m ²	0
196	চাকতির জড়তার ভ্রামক কত?	কতি তার	কেন্দ্র দিয়ে লম্বভাবে গমন	কারী কোনো অক্ষের সাপেক্ষে ঘুরছে। [য. বো. ২০১৬]
	$(\Phi) \frac{MR^2}{2}$	0	(뉙) MR ²	0
	$(\mathfrak{N}) \frac{3}{2} MR^2$	0	(되) 2MR ²	
१८।				০১৭–২০১৮; রুয়েট ২০১১–২০১২;
	জ. বি. ২০০৯–২০১০	; ই. বি. ২০	০০৪-২০০৫; রা. বো. ২০	১৫; দি. বো. ২০১৬; ব. বো. ২০১৯]
	$(\overline{\Phi}) \text{ ML}^2 \text{T}^2$	0	(켁) ML ² T ⁻²	. 0
	(গ) M ² LT ⁻²	0	(₹) ML ⁻² T ²	. , O
। दर	একটি চাকার জড়তার ভ্রামক 2 kg <mark>m²</mark>	। চাকাটি বি	মিনিটে 30 বার ঘুরছে। এর	া <mark>কৌণিক ভ</mark> রবেগ কত ?
	(Φ) π	Ö	(খ) 2π	0
	(গ) 3π	0	(₹) 4π	0
२०।	যখন কোনো কণার উপর প্রযুক্ <mark>ত টর্ক</mark> শূন্য	তখন নিচে	র কোন রাশিটি ধ্রুবক হয় ঃ	ৃ [ব. বো. ২০১৬]
	(ক) বল	0	(খ) কৌণিক ভরবেগ	0
	(গ) রৈখিক ভরবেগ	0	(ঘ) বলের ঘাত	0
२५।	্ঘূর্ণন গতিশক্তি E , জড়তার ভ্রা <mark>মক I এ</mark> বং			
	$(\Phi) E = I\omega$	0	$(\forall) E = I\omega^2$	0
	$(\mathfrak{I}) E = \frac{1}{2}I\omega$	0	$(\triangledown) E = \frac{1}{2}I\omega^2$	O [°]
२२ ।	নিচের কোন সম্পর্কটি সঠিক ?			[রা. বো. ২০১৬]
	$(\overline{\Phi}) \overrightarrow{L} = \overrightarrow{r} \times \overrightarrow{F}$	0	(খ) $\overrightarrow{L} = \overrightarrow{F} \times \overrightarrow{r}$.0
	$(\mathfrak{I}) \overrightarrow{L} = \overrightarrow{r} \times \overrightarrow{p}$	0	$(\forall) \overrightarrow{L} = \overrightarrow{p} \times \overrightarrow{r}$	0
২৩।	টর্ক τ, জড়তার ভ্রামক Ι এবং কৌণিক তৃ	রণ α-এর		
	$(\overline{\Phi}) \tau = \frac{I}{\alpha}$	0	$(\forall) \ \tau = \sqrt{I\alpha}$	0
	$(\mathfrak{I}) \tau = I^2 \alpha$	0	$(\forall) \tau = I\alpha$	0
२ 8 ।	বৃত্তীয় গতির ক্ষেত্রে কৌণিক ভরবেগের র	াশি কোনটি	?	[ঢা. বো. ২০১৬]
	(Φ) mrω		$(\mathfrak{A}) mr^2 \omega$	0
	$(\mathfrak{I}) mr\omega^2$	0	$(\nabla) m^2 r \omega$	0
२৫।	বল ও বলের ক্রিয়াকালের গুণফলকে কী ব	বলে ?		[চ. বো. ২০১৬ ; মা. বো. ২০১৮]
	(ক) ঘাত বল	0	(খ) কাজ	0
	(গ) বলের ঘাত	0	(ঘ) টৰ্ক	0

			V	
২৬।	2 kg ভরের একটি বস্তুকে 3 m দী সুতার উপর টান হবে—	ৰ্ঘ একটি সুত	ার এক প্রান্তে বেঁধে্ 4 ra	d s ^{_1} কৌণিক বেগে ঘুরানো হচ্ছে।
	(ক) 50 N	0	(খ) 48 N	0
	(গ) 100 N	0	(ঘ) 96 N	0
२१।	M ভরের একটি বস্থু ধ্রব বেগে X-অং	ক্ষর সমান্তরাবে	ল গতিশীল। মূলবিন্দুর সার্	পক্ষে এর কৌণিক ভরবেগ—
	(ক) শূন্য	0	(খ) ধ্রুব থাকে	0
	(গ) বেড়ে যায়	0	(ঘ) কমে যায়	0
२४।	কৌণিক ভরবেগের একক কোনটি ?		ঢ়ো.	বি. ২০১৮-২০১৯; রা. বো. ২০১৫]
	$(\overline{\Phi})$ kg m ² s ⁻²	0	(খ) kg m s ⁻¹	0
	(গ) kg m s ²	0	(₹) kg m ² s ⁻¹	Ö
551	কোনটি কেন্দ্রমুখী বলের রাশিমালা ?			[রা. বো. ২০১৫]
VID 1			mv^2	
	$(\Phi) mv^2r$	0	$(\forall) \frac{mv^2}{r}$	0
	$(\mathfrak{I}) mv^2r^2$	0	$(\forall) \frac{m\omega^2}{r}$	0
७०।	পাতলা বৃত্তাকার চাকতি <mark>র চক্রগতি</mark> র ব্য	াসার্ধ হলো—		[কু. বো. ২০১৫]
	$(\overline{\Phi}) K = \frac{l}{\sqrt{12}}$	0	$(\forall) \ K = \frac{l}{\sqrt{3}}$	0 4 7
	$(4) R = \sqrt{12}$			
	$(\mathfrak{I}) K = \frac{r}{\sqrt{2}}$	0	$(\mathfrak{V}) K = \frac{r}{\sqrt{12}}$	0
७५ ।	১ ০ কৌণিক ভরবেগের <mark>মাত্রা</mark> সমীকরণ কে		1,2	[য. বো. ২০১৫]
031	(本) MLT ⁻¹	0	(খ) ML ² T ⁰	0
		0	(되) ML ² T ⁻²	0 2
	(গ) ML ² T ⁻¹		(4) ML 1	[য. বো. ২০১৫; চ, বো. ২০১৬]
७२ ।	টর্কের একক হচ্ছে—	0	le!	(1. (4), 2004, 0, 64). 2000
	(ক) নিউটন		(খ) জুল	
	(গ) নিউটন-মিটার	0	(ঘ) জুল/সেকেড	0
99	সবচেয়ে দুর্বল বল কোনটি ?	[মেডি: ২৫	০১৬-২০১৭ ; কু. বো. ২০	১৬; য. বো. ২০১৫; সি. বো. ২০১৬]
	(ক) মহাকর্ষ বল	0	(খ) তাড়িতচৌম্বক বল	0
	(গ) সবল নিউক্লিয় বল	0	(ঘ) দুর্বল নিউক্লিয় বল	0
৩৪।	সমান ভরের দুটি বস্তুর মধ্যে স্থিতিস্থা	পক সংঘৰ্ষ হ	লে নিচের কোনটি সত্যি ?	এখানে ১ম বস্তুর আদি ও শেষ বেগ u_1
	ও $ u_1$ এবং ২য় বস্তুর আদি ও শেষ বে	গ и2 ও ν2।		[ব. বো. ২০১৫]
	$(\overline{\Phi}) u_1 = v_2$	0	(খ) $u_1 = v_1$	0
	$(\mathfrak{I}) u_1 = u_2$. O .	(घ) $u_2 = v_2$	0
৩৫।	তাড়িতচৌম্বক বল কোন কণার পারস্প	ারিক বিনিময়ে	র জন্য কার্যকর হয় ?	[সি. বো. ২০১৫]
	(ক) ফোটন	0	(খ) মেসন	0
	(গ) প্রোটন	0	(ঘ) গ্রাভিটন	. О

৩৬ ৷	আণবিক গঠনের জন্য দায়ী বল কোনটি ?			[দি. বো. ২০১৫]
	(ক) মহাকর্ষ বল	0	(খ) দুর্বল নিউক্লিয় বল	0
	(গ) সবল নিউক্লিয় বল	0	(ঘ) তাড়িতচৌম্বক বল	0
७२।	মহাকর্ষ বল কার্যকর যে কণার বিনিময়ের ফ	লৈ—		[রা. বো. ২০১৫]
	(ক) গ্রাভিটন	0	(খ) মেসন	0
	(গ) ফোটন	0	(ঘ) নিউট্রন	0
७४ ।	নিউক্লয়নের মধ্যে কোন কণার পারস্পরিক বি	বৈনিময়ের দ্ব		. বি. ২০১৬–২০১৭]
	(ক) নিউট্রনো	0	(খ) মেসন	0
	(গ) ইলেকট্রন	0	(ঘ) গ্রাভিটন	0
। ৫৩	ভরবেগের মাত্রা কোনটি ?		[কু. বৌ. ২০১৫, ২০	১৭; য. বো. ২০১৭]
	(す) MLT ⁻²	0	(뉙) M-1L3T-2	0
	(গ) MLT-1	0	(v) ML ² T-2	0
801	একক বল—			[ব. বো. ২০১৫]
	(ক) বস্তুর উপর একক ত্বরণ সৃষ্টি ক রে	0	(খ) একক ভরের বস্তুর উপ <mark>র যে কো</mark> নো	_
	(গ) বস্তুর উপর যে কোনো ত্বরণ সৃ <mark>ষ্টি করে</mark>	0	(ঘ) একক ভরের বস্তুর উপর এ <mark>কক তু</mark> র	,
1 68	টর্কের অপর নাম কী ?			[দি. বো. ২০১৫]
	(ক) ঘৰ্ষণ বল	0	(খ) জড়তার ভ্রামক	0
	(গ) ঘূর্ণন বল	0	(ঘ) কেন্দ্রমুখী বল	0
8२ ।	ডাল ভাঙ্গার যাতাকলে—			্টা. বো. ২০১৬]
	(i) অক্ষ সংলগ্ন কণার কৌণিক <mark>বেগ স</mark> হজ	হয়		
	(ii) কিনারের কণার রৈখিক বেগ <mark>বেশি</mark>			
	(iii) প্রতিটি কণার কোনো মুহূর্তের <mark>কৌণিক</mark>	ভরবেগ স	মান	
	নিচের কোনটি সঠিক ?		Orne (
	(ক) i ও ii	0	(খ) i	0
•	(গ) ii		(ঘ) i, ii ও iii	0
৪৩।	নিউটনের গতির দ্বিতীয় সূত্রে দেখা যায় ma	= k F;	्रवशात,	
	(i) k হচ্ছে একটি সমানুপাতিক ধ্রুবক			
	(ii) k-এর মান রাশিগুলোর এককের উপর (iii) k-এর মান SI পদ্ধতিতে 1	। শ ভর করে		
	নিচের কোনটি সঠিক ?			
	(本) i ও ii	0	(খ) i ও iii	0
	(গ) ii ও iii	0	(ম) i, ii ও iii	0
88	দুটি বস্তুর মধ্যে সংঘর্ষ হলে এদের—		(1) 1, 11 0 111	
	(i) প্রত্যেকের ভরবেগের পরিবর্তন ঘটে			
	(ii) মোট ভরবেগের কোনো পরিবর্তন ঘটে	না		
	(iii) এদের প্রত্যেকের উপর ঘাত বল ক্রিয়া			
	নিচের কোনটি সঠিক ?			
	(ক) i ও ii	0	(খ) i ও iii	0
	(গ) ii ও iii	0	(ঘ) i, ii ও iii	0

861	কোনো অক্ষের সাপেক্ষে m ভরের একটি	কণা ω সফ	াকৌণিক দ্রুতিতে অক্ষ হতে	r লম্ব দূরত্বে থেকে ঘুরতে থাকলে
	এর—			
	(i) $F = \frac{mv^2}{r}$ (ii) $F = m\omega^2 r^2$			
	প্রতীকগুলো প্রচলিত অর্থ বহন করলে নি	চর কোনটি	সঠিক ?	[ঢা. বো. ২০১৬]
	(ক) i ও ii	0 1	(খ) i ও iii	0
	(গ) ii ও iii	0	(ঘ) i, ii ও iii	0
8७।	কোনো বস্তুর ভরবেগ 40 kg m s ⁻¹ বল	তে বোঝায়-		[য. বো. ২০১৬]
	(i) বস্তুর ভর 1 kg হলে এর বেগ 40 n			, v
	(ii) বস্তুর ভর 40 kg হলে এর বেগ 10			
	(iii) বস্তুর ভর 6.3 kg হলে এর বেগ	6.36 m s		
	নিচের কোনটি সঠিক ?			0
	(ক) i ও ii	0	(খ) ii ও iii	
	(গ) i ও iii	0	(ঘ) i, ii ও iii	0
891	রাস্তার বাঁকে সাইকেল চা <mark>লানোর স</mark> ময় অ	ারোহীর নতি	কোণ হবে—	
	(i) $\theta = \tan^{-1} \frac{v^2}{rg}$ (ii) $\theta = \tan^{-1} \frac{v^2}{rg}$	$1^{-1}\frac{\omega^2r}{r}$	(iii) $\theta = \sin^{-1} \frac{v}{rq}$	
	নিচের কোনটি সঠিক ?	8	18	
	(ক) i ও ii	0	(খ) ii ও iii	0
	(গ) i ও iii	0	(ঘ) i, ii ও iii	
8४।			(1) .,	[ঢা. বো. ২০১৫]
00 (. 47	
	(i) $\overrightarrow{\tau} = \overrightarrow{r} \times \overrightarrow{F}$ (ii) $\overrightarrow{\tau} = I \overrightarrow{\alpha}$	(iii)	$\vec{\tau} = \frac{d T}{dt}$	
	নিচের কোনটি সঠিক ?		ie.	
	(ক) i ও ii	0	(খ) i ও iii	0
	(গ) ii ও iii	0	(ঘ) i, ii ও iii	0
8৯।	রাস্তার ব্যাংকিং নির্ভর করে—			১১৫; দি. বো. ১৬; মা. বো. ২০১৮]
001	(i) বাঁকের ব্যাসার্ধের উপর (ii) গাড়ি	র ভরের উপ		
	নিচের কোনটি সঠিক ?	200000		
	(ক) i ও ii	Ο.	(খ) i ও iii	0
	(গ) ii ও iii	0	(ঘ) i, ii ও iii	0
(°0 1			() -,	[সি. বো. ২০১৫; রা. বো. ২০১৭]
401	(i) বল ও বলের ক্রিয়াকালের গুণফল (ii) ভরবেগে	র পরিবর্তন (iii) ভরবেগের	পরিবর্তনের হার
	নিচের কোনটি সঠিক ?			
	ii v ii (季)	0	(খ) i ও iii	0
		0	(ঘ) i, ii ও iii	0
	(গ) ii ও iii		(1) 1, 11 0 111	4

<i>७</i> ऽ ।	একটি চাকার ভর 6 kg এবং চক্রগ চাকাটির জড়তার ভ্রামক কত ?	তির ব্যাসার্ধ 0.3।	m। নিম্নোক্ত (৫২) নং ও (৫৩) নং প্র	শ্নের উত্তর দাও :
1 6 0	(조) 5.4 kg m ²	0	(박) 0.54 kg m ²	
	(গ) 54 kg m ²	. 0	(되) 50 kg m ²	0
<i>(</i> २।	চাকাটিতে 3 rad s ⁻² কৌণিক ত্বর			[ঢা. বো. ২০১৬]
471	(本) 1.62 N m	0	(켁) 1.8 N m	0
	(গ) 16.2 N m	0	(되) 18 N m	
	নিচের চিত্রটি লক্ষ্য কর এবং (৫৩)	ও (৫৪) নং প্রশ্নের	. ,	[সি. বো. ২০১৭]
		সংঘ	র্ষের পূর্বে	
		$m_1 = 5 \text{ kg}$	$m_2 = 6 \text{ kg}$	
		$A \longrightarrow$		
		4 ms ⁻¹	5 ms ⁻¹	
		সংঘ	বর্ষের পরে	
		A		
		5 ms	-1	তেইৰ পৰ কাৰ্য নিচ্ছ নিচ্ছ
		ত দিকে একই রে	রখা বরাবর চলে সংঘর্ষ ঘটায়। <mark>সংঘ</mark>	गरवंत भन्न जाना । नजा । नजा
	গতিপথের বিপরীত দিকে চলছে ।			
ে	সংঘর্ষের পরে B বস্তুর বেগ ক <mark>ত ?</mark>		(mt) 4 171	0
	(本) 2.50 m s ⁻¹	0	(박) 4.17 m s ⁻¹	0
	(গ) 5.83 m s ⁻¹	0	(国) 12.50 m s ⁻¹	
৫ 8 ।	উপরিউক্ত সংঘর্ষের ক্ষেত্রে—		লে (:::) স্বাক্তমিটি ভামিটিঅগ্রিক করে	
		ত্লাজ সংরাক্ষত হ	হবে (iii) সংঘর্ষটি অস্থিতিস্থাপক <mark>হবে</mark>	
	নিচের কোনটি সঠিক ?	0	Carl 1.20 111	0
	(季) i ଓ ii		(খ) i ও iii	0
	(গ) ii ও iii		(ঘ) i, ii ও iii	
	করিম প্রীক্ষাগারে 1 m দৈর্ঘ্য ও	2 kg ভরের একা	ট সরু ও সুষম দণ্ডের প্রথমে মধ্যবিল্	ত দেখ্যের সাথে লম্বভাবে
	গমনকারী অক্ষের সাপেক্ষে এবং	পরবর্তাতে ঐ এব	কই দণ্ডের প্রান্ত দিয়ে এবং দৈর্ঘ্যের ব	লম্বভাবে গমনকারা অক্ষের
			করলেন। ৫৬নং ও ৫৭নং প্রশ্নের উত্তর	भाषा [त्रा. (पा. २०३७)
(८)	প্রথম ক্ষেত্রে দণ্ডটির জড়তার ভ্রাম		(1) 0 1	o O
	$(\overline{\Phi}) \ 0.167 \ \text{kg m}^2$		(킥) 0.67 kg m ²	
	(গ) 1 kg m ²	0	(₹) 2 kg m ²	0
৫৬।	ঘূর্ণন অক্ষ প্রান্তে হলে চক্রগতির ব	্যাসার্ধ প্রথম ক্ষেত্রে	র—	
	$(\overline{\Phi})$ $\frac{1}{4}$ গুণ	0	(খ) 2 গুণ	Ο
	(গ) 12 গুণ	0	(ঘ) 36 গুণ	0
691	অস্থিতিস্থাপক সংঘর্ষে সংরক্ষিত হ	য়——		[অভিন্ন প্রশ্ন ২০১৮]
4 11	(ক) গতিশক্তি	0	(খ) স্থিতিশক্তি	0
	(গ) কৌণিক ভরবেগ		(ঘ) ভরবেগ	0
	(१) (वर्गानिक अवरवर्ग		(1) 0401.1	

७ ४।	প্রফেসর আব্দুস সালাম ও স্টিফেন ওয়াইনবার্গ কে	ান বল দুটি	কৈ একীভূত করেছিলেন ?	খু. বি. ২০১২–২০১৩ ;
		_		জ. বি. ২০১০–২০১১]
	(ক) বিশ্বজনীন মহাকর্ষ বল ও তাড়িতচৌম্বক বল	0	(খ) দুর্বল নিউক্লিয় বল ও সবৰ	
	(গ) তাড়িতচৌম্বক বল ও সবল নিউক্লিয় বল	0	(ঘ) তাড়িতচৌম্বক বল ও দুৰ্বৰ	ল নিউক্লিয় বল 💛
৫৯।	যদি অবস্থান ভেক্টর \overrightarrow{r} ভরবেগে \overrightarrow{p} এবং প্রযুত্ত	ন্বল 🗃 হ	হয়, তবে কৌণিক ভরবেগ $\ \overrightarrow{\mathbf{L}}'$	ও টক্
	$(\overrightarrow{L}, \overrightarrow{ au})$ অনুযায়ী—		[*]	া.বি.প্র.বি. ২০১৭–২০১৮]
	$(\overline{\Phi}) \left(\overrightarrow{r} \times \overrightarrow{F}, \overrightarrow{r} \times \overrightarrow{p} \right)$	0	$(\forall) (\overrightarrow{r} \times \overrightarrow{p}, \overrightarrow{r} \times \overline{F})$	⇒) ○
	$(\mathfrak{I})\left(\overrightarrow{F}\times\overrightarrow{r},\overrightarrow{p}\times\overrightarrow{r}\right)$	0	(\overline{y}) $(\overrightarrow{p} \times \overrightarrow{F}, \overrightarrow{F} \times \overrightarrow{p})$	
७०।	প্রোটন ও ইলেকট্রনের মধ্যে আকর্ষণের জন্য কো	ন মৌলিক		্বু. বি. ২০১২–২০১৩]
	(ক) শক্তিশালী বল	0	(খ) মাধ্যাকর্ষণ	0
	(१) पूर्वल	0,	(ঘ) তাড়িতচৌম্বক বল	0
। ८७	$2~{ m m~s^{-2}}$ ত্বরণে উপরে উঠন্ত একটি লিফটে এ	াকটি লোক	<mark>ক দাঁড়ানোর</mark> ফলে ঊর্ধ্বমুখী ব	ল 1180 N হলে লোকটির
	ভর হবে—			[জা. বি. ২০১৫–২০১৬]
	(v) 50 kg	0 ,	(켁) 100 kg	0
	(গ) 60 kg	0	(ঘ) কোনোটাই নয়	0
७२ ।	একটি বস্তুর উপর 5 <mark>N বল</mark> 10 s ক্রিয়া করে। ভ	রবেগের গ	পরিবর্তন কী ?	ঢ়া. বি. ২০১৬–২০১৭;
				জ. বি. ২০১৬–২০১৭]
	(季) 25 kg m s ⁻¹	0	(খ) 50 kg m s ⁻² (ঘ) কোনোটাই নয়	0
৬৩।	(গ) 25 kg m s^{-1} শূন্যস্থানে দুটি ইলেক্ট্রনের মধ্যকার কুলম্ব বল F	ূ এবং মহ		ব—
		E		[ঢা. বি. ২০১৬–২০১৭]
	$(\Phi) 4.2 \times 10^{62}$	0	(খ) 4.2×10^{52}	0
	(গ) 4.2 × 10 ⁴²	0	(₹) 4.2 × 10 ³²	0
৬৪।	সমান ভরবিশিষ্ট তিনটি খণ্ড A, B, C দড়ি দ্বারা			
	ব্যবস্থাটি ত্বরিত হয়। ঘর্ষণ বল উপেক্ষা করলে খ	ণ্ড B'-এর	উপর মোট বল হলো—	[ঢা. বি. ২০১৪–২০১৫]
	A	_В_	$C \xrightarrow{F}$	
	(本) 0	0	(খ) F '/3	0
	(ヤ) U (カ) F/2	0	(¬) 1 /3 (¬) 2 F /3	0
156 I	16 কেজির একটি বোমা বিক্ষোরিত হয়ে 4 কে	জি ও 12	` '	কেজি ভরের বেগ 4 m s ⁻¹
	হলে অন্য টুকরোটির গতিশক্তি কত ?	,-, - 12	41-11-11-12-1	[জ. বি. ২০১০–২০১১]
	(ຈ) 96 J	0	(খ) 144 J	
	(গ) 288 J	0	(되) 192 J	0
৬৬।	একটি লৌহবলয় একটি অনুভূমিক মসৃণ তলে	ω সমকেঁ		aর ভর M এবং ব্যাসার্ধ r ।
	বলয়টির মোট গতিশক্তি নির্ণয় কর।			[জা. বি. ২০১৭–২০১৮]
	$(\overline{\Phi})\frac{1}{2}Mr\omega^2$	0	(খ) $Mr^2\omega^2$	0
	~	0 ,	$(\overline{4}) \frac{1}{4} Mr\omega^2$	
	(গ) $Mr^2\omega$	-	$(4) \frac{\pi}{4} Mr\omega^2$	

७१।	একটি কাঠের তক্তার উপর অবস্থিত এব	চটি ইটের চি	নিশ্চল কোণ 40°। ইট ও তত্ত	দার মধ্যকার স্থিতি ঘর্ষণ গুণাঙ্ক
	কত ?			[জা. বি. ২০১৭–২০১৮]
	(季) 0.87	0	(켁) 0.85	
	(গ) 0.84	0	(ঘ) 0.97	0
৬৮।	একজন নৃত্যশিল্পী I জড়তার ভ্রামক নিয়ে এ	কটি উল্লম্ব ত	মক্ষের চারদিকে 20 rad s ⁻¹	কৌণিক বেগে ঘুরছে। যদি সে
	হঠাৎ করে কৌণিক বেগ পরিবর্তন করে 10	rad s ⁻¹ হয়	া, তবে নতুন জড়তার ভ্রামক	কত হবে ?
			[বঙ্গব	ক্ষু বি. প্র. বি. ২০১৭–২০১৮]
	(ক) 2 <i>I</i>	0	(খ) I/2	O
	(গ) 31	O a	(v) I/3	0
৬৯।	স্থির অবস্থায় থাকা একটি বস্তু বিস্ফোরণের			
	দিকে যথাক্রমে V_1 এবং V_2 বেগ প্রাপ্ত হয়।	$V_1 \otimes V_2$		[ঢা. বি. ২০১২–২০১৩]
	$(\overline{\Phi})\frac{M_1}{M_2}$	0	$(orall) rac{M_2}{M_1}$	0
	(গ) $\left(\frac{M_1}{M_2}\right)^{\frac{1}{2}}$	0	(घ) $\left(\frac{M_2}{M_I}\right)^{\frac{1}{2}}$	0
901	m ভরের একটি বস্তু r ব্যাসার্ধের বৃত্তাকার	পথে সমদ্র	তিতে চলছে। বৃত্তাকার <mark>গতি</mark>	র পর্যায়কাল T , বস্তুটির উপর
	কেন্দ্রমুখী বলের মান কত ?			[ঢা. বি. ২০১২–২০১৩]
	$(\overline{\phi}) \frac{4\pi^2 mr}{T^2}$	0	$(rak{d}) rac{4\pi^2 mr^2}{T}$	0
	$(\mathfrak{I}) \frac{4\pi mr^2}{T^2}$	0	(ঘ) πmr ²	0
۱ د۹	4 kg ও 6 kg ভরের দুট <mark>ি বস্তু </mark> যথাক্রমে 1			<mark>দৈকে</mark> গতিশীল। পরস্পর ধাক্কা
	খাওয়ার পর বস্তু দুটি যুক্ত অ <mark>বস্থায় চ</mark> লতে থাব	চলে , যুক্ত ব	স্কুর বেগ কত ? [ঢা. বি. ২০	<mark>०१–</mark> २००४, २० ১७ –२०১8;
			শা.বি.প্র.বি. ২০১৬–২	<mark>০১</mark> ৭; খু. বি. ২০১২–২০১৩]
	(本) 10 m s ⁻¹	00	(켁) 7 m s ⁻¹	0
	(গ) 6 m s ⁻¹	0	(ঘ) 4 m s ^{−1}	
१२ ।	1000 kg ভরের একটি উড়োজাহাজ স্থি	ব বেগে সে	<mark>াজা পথে উড্ডয়ন</mark> করছে। ব	্যাতাসের ঘর্ষণ বল 1800 N.
	উড়োজাহাজটির উপর প্রযুক্ত নিট বল হবে—			[বুয়েট ২০১২–২০১৩]
	(ক) 0 N	0	(খ) 11800 N	
	(গ) 1800 N	0	(ঘ) 9800 N	0
৭७ ।	অনুভূমিক মেঝেতে স্থিরাবস্থায় 800 N ও প্রয়োজন। স্থিরাবস্থায় ঘর্ষণ সহগের মান—	ওজনের এব	, ,	ষ 200 N অনুভূমিক ধাক্কার [বুয়েট ২০১২–২০১৩]
	(季) 0.25	0	(%) 0 125	(30.00 \0.00)
		0	(খ) 0.125	0
	(গ) 0.50		্ষ) 4.00	
۱ ۹8	একটি ইলেকট্রন পরমাণুর নিউক্লিয়াসের চড় প্রদক্ষিণ করে। ইলেকট্রনের কেন্দ্রমুখী বলের		A ব্যাসার্ধের একটি বৃত্তাকার	পথে 4 × 10 ⁶ m s ⁻¹ বেগে [কুয়েট ২০১৫–২০১৬]
	(\overline{a}) 1.51 × 10 ⁻⁷ N	0	(박) 1.32 × 10 ⁻⁷ N	0
	(গ) 2.32 × 10 ⁻⁸ N	0	($\sqrt{1.52} \times 10^{-5} \text{ N}$	0
			, ,	

961	73 kg ভরের একটি বাক্সকে 543 N অনু	ভূমিক বলে ে	মঝের উপর দিয়ে টানা হচ্ছে।	বাক্সটি যখন চলে তখন বাক্স
	ও মেঝের মধ্যবর্তী ঘর্ষণ সহগ 0.53। বারে	ক্সর ত্বণ কত	?	[কুয়েট ২০০৯–২০১০]
	(季) 2.24 m s ⁻²	0	(켁) 0.224 m s ⁻²	0
	(対) 4.84 m s ⁻²	0	(₹) 0.448 m s ⁻²	0
१७।	নিজ ঘূর্ণন অক্ষের সাপেক্ষে দুটি বস্তুর জড়ং	হার ভ্রামক য	থাক্রমে 1 এবং 21। যদি তারে	দর ঘূর্ণন গতিশক্তি সমান হয়,
	তাদের কৌণিক ভরবেগের অনুপাত কত ?			[চুয়েট ২০১৪–২০১৫]
	(季) 1 % 2	0	(খ) $\sqrt{2}$ ঃ 1	0
	(\mathfrak{I}) 1 \mathfrak{I} $\sqrt{2}$	0	(ঘ) 2 ঃ 1	0
991	একটি লিফট $15~{ m m~s^{-1}}$ বেগে উপরে উঠি	ছ। 60 kg উ	তরের একজন মানুষ লিফটে ত	মবস্থান করলে লিফটের উপর
	তার প্রতীয়মান ওজন হবে—	e		[বুয়েট ২০১০–২০১১]
	(季) 588 N	0	(켁) 900 N	0
	(গ) 750 N	0	(되) 800 N	0
१४ ।	কোনো সাইকেল আরোহীকে 60 m ব্যাসা	র্ধের বৃত্তাকার	<mark>পথে কত বেগে</mark> ঘুরতে হবে ফ	যাতে তিনি উল্লম্ব তলের সাথে
	30° কোণে আনত থাকবেন ?			[রুয়েট ২০১৩–২০১৪]
	(季) 8.81 m s ⁻¹	0	(켁) 1.88 m s ⁻¹	0
	(গ) 81.8 m s ⁻¹	0	(₹) 18.43 m s ⁻¹	0
৭৯ ।	একটি 0.2 kg ওজনের <mark>মুঠোফোন</mark> একটি	বইয়ের ওপর	স্থির অবস্থায় রাখা আ <mark>ছে। বই</mark>	টিকে অনুভূমিকের সাথে কত
	কোণে হেলানো হলে ব <mark>ইয়ের</mark> উপরিতল হস	ত মুঠোফোনা	ট গাড়িয়ে নামতে থাকব <mark>ে ? [μ</mark>	
				[চুয়েট ২০১২–২০১৩]
	(香) 12.3°	0	(খ) 16.7°	O
	(গ) 20.8°	0	(ঘ) কোনোটিই নয়	0
५०।	কোনটি ঘূর্ণায়মান বস্তুর গ <mark>তিশক্তি</mark> ?			[क़्रांप २०১১–२०১२]
	$(\overline{\Phi}) KE = \frac{1}{2} I W$	0	$(\forall) KE = \frac{1}{2}I\omega^2$	0
	1	0 pm		0
	(গ) $KE = \frac{1}{2}F$		(ঘ) কো <mark>নোটিই নয়</mark>	
b31	0.150 kg ভরের একটি পাথরখণ্ডকে 0.7	75 m লম্বা এ	<mark>কটি সুতার এক</mark> প্রান্ত বেঁধে বৃ	
	বার ঘুরলে সুতার উপর টান নির্ণয় কর।			[कूरय़र्षे २०১১–२०১२]
	(ক) 9.99 N	0	(খ) 9.90 N	0
	(গ) 9.95 N	0	(되) 9.98 N	0
४२ ।	5 kg ভর ও 0.25 m ব্যাসার্ধবিশিষ্ট এ	কটি বেলন		াডাতে থাকলে তার গতিশক্তি
	কত ?			[চুয়েট ২০১৫–২০১৬]
	(क) 0.078 J	0	(খ) 390.63 J	0
		0	• • •	0
	(গ) 0.73 J		(ঘ) 585.94 J	
४७।	একটি গাড়ির চাকা 30 min-এ 2000 বার	ন খুরে IU kn	n শ্ব আতক্রম করে। চাকার	
				[কুয়েট ২০০৭–২০০৮]
	(季) 5 m	0	(켁) 10 m	0
	(গ) 15 m	0	(되) 20 m	O.

৮ 8।	বোরের হাইড্রোজেন পরমাণু মডেলে একটি	ইলেকট্রন এ	একটি প্রোটনের চারদিকে 5.2	× 10 ^{–11} m ব্যাসার্ধের একটি
120	বৃত্তাকার পথে $2.18 \times 10^6~\text{m s}^{-1}$ বেগে ও	ধ্রদক্ষিণ করে	র। ইলেকট্রনের ভর $9.1 imes10$	0 ⁻³¹ kg হলে কেন্দ্ৰমুখী বল
	কত হবে ?			[বুয়েট ২০১২–২০১৩]
	(季) 3.81× 10 ⁻⁶ N	0	(**) 8.32×10^{-8} N	0
	(ガ) 2.17× 10 ⁻⁴⁷ N	0	(₹) 1.25× 10 ²⁶ N	0
४ ७।	একজন সাইকেল আরোহী ঘণ্টায় 24 km বে	বে 30 m	ব্যাসার্ধের একটি বৃত্তাকার পথে	মোড় নিচ্ছে। তাকে উল্লম্বের
	সাথে কত কোণে হেলে থাকতে হবে ?			[কুয়েট ২০১৪–২০১৫]
	(季) 8°36′	0	(켁) 7°56′	Ο
	(গ) 9°2′	0	(ঘ) 8°41'	0
৮৬।	একটি বস্তু স্থির অবস্থায় ছিল। 16 N এর এ	কটি বল এর	র উপর 5 s ধরে কাজ করে এব	বং এর পর আর কোনো কাজ
	করল না। বস্তুটি এরপর 6s-এ 52 m দূরত্ব	গেল। বস্তুটি	র ভর কত ?	[কুয়েট ২০১৬–২০১৭]
	(ক) 3.0769 kg	0	(켁) 9.023 kg	0
	(গ) 9.23 kg	0	(য) 10 kg	0
७ ९।	অনুভূমিক দিকে গতিশীল 50 g ভরের	একটি বল	20 cm s ⁻¹ বেগে একটি যে	নয়ালে লম্বভাবে ধাক্কা খেয়ে
	10 cms ⁻¹ বেগে বিপরীত দিকে <mark>ফিরে গেল</mark> ে	া বলের ঘাত	চ কত হবে ?	[বুয়েট ২০০৯–২০১০]
	(क) 0.015 kg m s ⁻¹	0	(켁) 0.005 kg m s ⁻¹	O
	(গ) 0.15 kg m s ⁻¹	0	(₹) 0.05 kg m s ⁻¹	0
७ ७।	M ভরের R ব্যাসার্ধের এক <mark>টি বৃত্তা</mark> কার সিন্	ল্ভারের জড়	তার ভ্রামক জ্যামিতিক অক্ষের	সমান্তরাল কিনার স্পর্শক এর
	সাপেক্ষে কত হবে ?			[চুয়েট ২০১২–২০১৩]
	$(\Phi) \frac{1}{2} MR^2$	0	$(4)\frac{3}{2}MR^2$	0
	(গ) MR ²	0	্ঘ) কোনোটিই নয়	0
४ ७।	0.2 kg ভরের একটি বস্তুকে 0.5 m লং	া রশিতে ৫		$^{ m ad}$ ${ m s}^{-1}$ বেগে ঘুরালে রশির
	ঘূৰ্ণায়মান টান কত N হবে ?			[মেডিকেল ২০০৮–২০০৯]
	(क) 0.4 N	0	(박) 0.6 N	0
	(গ) 0.8 N	0	(ঘ) 1.6 N	0
৯०।	একটি লিফট $1~{ m m~s^{-2}}$ ত্ব্রণে নিচে নামছে	। लिফটের	<mark>মধ্যে দাঁড়ানো এক</mark> জন ব্যক্তির স	
	অনুভব করবেন—			[চুয়েট ২০১১—২০১২]
	(本) 350 N	0	(খ) 572 N	O
	(গ) 250 N	0	(ঘ) কোনোটিই নয়	0
। ८७	22 m s ⁻¹ বেগে আগত 0.25 kg ভরে		চকেট বলকে একজন খেলো <u>ই</u>	
	থামিয়ে দিল। খেলোয়াড় কর্তৃক প্রযুক্ত বল নি			[কুয়েট ২০১৩–২০১৪]
	(本) 45.83 N	0	(খ) 46 N	O
	(গ) 45.6 erg	0	(च) 46.1 J	0
৯২।	3 kg ভরের একটি বস্তুর উপর 10 N বল	প্রয়োগ কর	লে বস্তুটি $3~\mathrm{m}~\mathrm{s}^{-2}$ ত্বরণে চল	তে থাকে। বস্তুটির উপর কত
	ঘর্ষণ বল ক্রিয়া করছে ?			[কুয়েট ২০১৭–২০১৮]
	(ক) 16 N	0	(খ) 13 N	0
	(키) 6 N	0	(되) 1 N	0

৯৩।	সমত্বরণ চলমান একটি গাড়ির বেগ পূর্বে	র আদিবেগে	ার 3 গুণ করা হলে গাড়িটি	থামাতে পূর্বের কত গুণ দূরত্বের
	প্রয়োজন হবে ?			[মাদ্রাসা বোর্ড, ২০১৮]
	$(\overline{\Phi})\frac{1}{9}$	0	$(rak{d})\frac{1}{3}$	0
	(গ) 3	0	(ঘ) 9	0
৯৪ ।	16 kg ভরের একটি স্থির বস্তুর উপর 4 s	ব্যাপী 8 N ব	াল প্রযুক্ত হলো। উক্ত বস্তুর	বেগের পরিবর্তন হবে—
				[বুয়েট ২০১২–২০১৩]
	(季) 0.5 m s ⁻¹	0	(켁) 2.0 m s ⁻¹	0
	(গ) 4.0 m s ⁻¹	0	(₹) 8.0 m s ⁻¹	0
१ ३६	সার্কাস খেলায় একটি বাইক 1200 m / f	মিনিট বেগে	বৃত্তাকার পথে ঘুরছে। বৃত্তা	কার পথের ব্যাসার্ধ 200 m হলে.
	বাইকটির কৌণিক বেগ কত ?			[কুয়েট ২০১৭–২০১৮]
	(▼) 0.01 rad s ⁻¹	0	(খ) 0.001 rad s ⁻¹	0
	(গ) 1.00 rad s ⁻¹	0	(₹) 0.1 rad s ⁻¹	0
৯৬।	যদি 5 kg ভরের একটি বন্দু <mark>ক থেকে</mark> 2	0 g ভরের	একটি গুলি 1000 m s ⁻¹	বেগে ছোঁড়া হয় তবে বন্দুকের
	পশ্চাৎবেগ কত ?			[কুয়েট ২০১৬–২০১৭
	(季) 4 m s ⁻¹	0	(뉙) 4000 m s ⁻¹	0
	(গ) 40 m s ⁻¹	0	(घ) 4 cm s ⁻¹	
৯৭।	রেল লাইনের একটি বাঁ <mark>কের</mark> ব্যাসার্ধ 99 n	n এবং লাই	নর পাত দুটির মধ্যে দূরত্ব	1.5 m। ভিতরের পাত অপেক্ষা
	বাইরের পাত কতখানি <mark>উঁচু হ</mark> লে বাইরের প			
	নিতে পারবে ?		2	[চুয়েট ২০১৫–২০১৬]
	(季) 1.6 m	0	(켁) 1.3 m	0
	(গ) 0.148 m	0	(ঘ) 1.48 m	0
विष ।	10 m / s সমদ্রুতিতে r ব্যাসা <mark>র্ধের বৃত্তাকা</mark> র	র পথে ঘূর্ণায়		নিচের চারটি লেখচিত্রের কোনটি
	সঠিক (কণার ত্বরণ a) ?			[ঢা. বি. ২০১৮–২০১৯]
	(季)		০ (খ) ↑	0
	a		a	
	(গ) 🚶		০ (ঘ) [†] /	· · · · · · · · · · · · · · · · · · ·
				─
৯৯।	10 kg ভরের একটি বস্তুর উপর 2 F মানে	ার বল প্রয়ো	গ করার ফলে বস্তুটির তুরণ	হয় 60 m/s ² । M ভরের একটি
	বস্তুর উপর 5 F মানের বল প্রয়োগ করার য			
				[ঢা. বি. ২০১৮–২০১৯]
	(To) 3.3 kg	'O (খ) 4.8 kg	0
	(গ) 21 kg	_	ঘ) 30 kg	0
	-0	,	, 50 16	

১০০। কোনটি জড়তার ভ্রামক সংক্রান্ত সমান্তরাল অক্ষ উপপাদ্য?

	$(\overline{\Phi}) \ I_z = I_x + I_y$	0	$(\forall) I = I_g + MK^2$	0			
	(গ) $I = I_g + MK$	0	$(\forall) \ I = I_g + Mh^2$	0			
0031	দুটি সমান ভরের বস্তুর মধ্যে স্থিতিস্থাপক স	ংঘৰ্ষ ঘটলে	[:	রা. বো. ২০১৯]			
	(i) সংঘর্ষের পূর্বের ও পরের মোট ভরবগ	একই থাবে	\$				
	(ii) সংঘর্ষের পূর্বের ও পরের মোট গতিশা	ক্তি একই থ	াকে				
	(iii) সংঘর্ষের পর বস্তুদ্বয় বেগ বিনিময় কর	বে					
	নিচের কোনটি সঠিক ?						
	ii & i (4)	0	(খ) ii ও iii	0			
	(গ) i ও iii	0	(ঘ) i, ii ও iii	0			
০২। খুব অল্প সময়ের জন্য খুব বড় মানের বল প্রযুক্ত <mark>হলে তাকে বলে—</mark> [ব. বো. ২০							
	(ক) সংশক্তি বল	0	(খ) ঘূৰ্ণন বল	0			
	(গ) রাসায়নিক শক্তি	0	(ঘ) ঘাত বল	0			
হুনির্ব	চিনি প্রশ্নাবলির উত্তরমালা :						
		THE RESERVE AND ADDRESS OF THE PARTY OF THE					

		and the second s	and the second second						
১ । (গ)	২।(খ)	৩।(ঘ)	8 ((((本)	৫। (গ)	৬। (গ)	৭।(খ)	৮।(ক)	৯। (গ)	১০।(খ)
১১। (ঘ)	১২। (ক)	১৩।(গ)	১৪।(ঘ)	১৫। (খ)	১৬। (গ)	১৭। (ক)	১৮। (খ)	<mark>১</mark> ৯। (খ)	২০।(খ)
২১। (ঘ)	২২। (গ)	২৩।(ঘ)	২৪। (খ)	২৫। (গ)	২৬। (ঘ)	২৭। (ক)	২৮। (ঘ)	<u>২৯ । (খ)</u>	৩০।(গ)
৩১। (গ)	৩২। (গ)	৩৩। (ক)	৩৪। (ক)	৩৫। (ক)	৩৬। (ঘ)	৩৭। (ক)	৩৮। (খ <mark>)</mark>	৩৯। (গ)	8০।(ঘ)
8১। (গ)	8২। (গ)	৪৩। (ঘ)	88। (ঘ)	৪৫। (খ)	৪৬। (গ)	৪৭। (ক)	৪৮। <mark>(য)</mark>	8৯। (খ)	৫০। (ক)
৫১। (খ)	৫২। (ক)	৫৩।(ক)	৫৪। (খ)	.৫৫। (ক)	৫৬। (খ)	৫৭। (ঘ)	৫৮ I(ঘ)	৫৯। (খ)	৬০। (ঘ)
৬১। (খ)	৬২। (ক)	৬৩।(গ)	৬৪। (খ)	৬৫। (গ)	৬৬। (খ)	৬৭। (গ)	৬৮।(ক)	৬৯। (খ)	৭০। (ক)
৭১। (খ)	৭২। (ক)	৭৩।(ক)	৭৪।(খ)	৭৫।(ক)	৭৬।(গ)	৭৭।(ক)	৭৮। (ঘ)	৭৯। (খ)	৮০।(খ)
৮ ১ ।(ক)	৮২।(ঘ)	৮৩।(ক)	৮৪।(খ)	৮৫।(ক)	৮৬।(গ)	৮৭। (ক)	৮৮। (খ)	৮৯।(ঘ)	৯০।(খ)
৯১।(ক)	৯২।(ঘ)	৯৩।(ঘ)	৯৪।(খ)	৯৫।(ঘ)	৯৬।(ক)	৯৭।(গ)	৯৮। (ঘ)	৯৯। (ঘ)	১০০ ৷(ঘ)
১০১।(ঘ)	১০২।(ঘ)								

খ–বিভাগ: সৃজনশীল প্রশ্ন (CQ)

ক্যারম খেলার সময় রিনা ক্যারম বোর্ডে 12 গ্রাম ভরের একটি গুটির উপর আরেকটি গুটি রেখে 150 গ্রাম ভরের 31 স্ত্রীইকার দিয়ে গুটিটিকে আঘাত করলো। স্ত্রাইকারটি নিচের গুটিটিকে 0.75 N বলে আঘাত করে। ফলে নিচের গুটি সরে গেল এবং ওপরের শুটি স্থির থাকে এবং নিচের শুটির স্থান দখল করে।

- ক. জড়তা কী ?
- খ. নিউটােনের গতির দ্বিতীয় সূত্র ব্যাখ্যা কর।
- গ. স্ত্রাইকারটি 3 s পরে গুটিকে কত বেগে আঘাত করবে ? উদ্দীপকের আলোকে ব্যাখ্যা কর।
- ঘ. যদি স্ত্রাইকার গুটিকে আঘাত না করে তাহলে কী হবে দ্বিতীয় সূত্রের সাহায্যে গাণিতিকভাবে বিশ্লেষণ করে বুঝিয়ে দাও।

২। 108 km h^{-1} বেগে চলমান একটি গাড়ির চালক 45.5 m দূরে সাদা ছড়ি হাতে একজন অন্ধ লোককে দেখতে পেলেন। সাথে সাথে ব্রেক চেপে দেওয়ায় লোকটির 50 cm সামনে এসে গাড়িটি থেমে গেল। আরোহীসহ গাড়ির ভর 1000 kg.

নিচের প্রশ্নগুলোর উত্তর দাও:

- ক. জড়তার ভ্রামক কী ?
- খ. ভরবেগের সংরক্ষণ সূত্রটি ব্যাখ্যা কর।
- গ. উদ্দীপকে উল্লেখিত গাড়ি থামাতে এর উপর কত বল প্রযুক্ত হলো নির্ণয় কর ।
- ঘ. ব্রেকজনিত বল কম হলে দুর্ঘটনা ঘটতে পারতো । দুর্ঘটনা রোধে রাস্তার প্রকৃতি কীরূপ হওয়া উচিত যুক্তি সহকারে তোমার মতামত দাও।
- ৩। একজন নৌকার মাঝি স্রোতের প্রতিকূলে নৌকাকে এগিয়ে নেওয়ার জন্য অনুভূমিকের সাথে 60° কোণে লগির সাহায্যে ভূমিতে $600~\rm N$ বল প্রয়োগ করেন। এতে নৌকা $1.5~\rm m$ s $^{-2}$ ত্ব্বণ লাভ করে। মাঝিসহ নৌকার ভর $150~\rm kg$.

নিচের প্রশ্নগুলোর উত্তর দাও:

- ক, নিউটনের সংজ্ঞা দাও।
- খ. নিউটনের গতিসূত্রে<mark>র সীমা</mark>বদ্ধতা আলোচনা কর।
- গ. নৌকাটি চলার জন্য কত কার্যকর বল লাভ করে ?
- ঘ. গাণিতিক বিশ্লেষণে<mark>র সা</mark>হায্যে নৌকাটির 1.5 m s⁻² তুরণ প্রাপ্তির কারণ সম্প<mark>র্কে তে</mark>ামার মতামত বর্ণনা কর।
- 8। একটি স্থির বস্তুর উপর 10 s ধরে 50 N বল ক্রিয়া করে।

নিচের প্রশ্নগুলোর উত্তর দাও:

- ক. কৌণিক ত্বরণ কী ?
- খ. টৰ্ক বলতে কী বোঝ ?
- গ. কোনো বস্তুর ভর , ত্বরণ এবং <mark>এর উপর ক্রিয়াশীল বলের মধ্যে সম্পর্ক স্থা</mark>পনকারী সমীকরণটি প্রতিপাদন কর।
- ঘ. উদ্দীপকে উল্লেখিত বস্তুর ভর 25 kg। <mark>এর গতিকাল যদি 20 s হ</mark>য় তাহলে গাণিতিক বিশ্লেষণের সাহায্যে দেখাও যে, বস্তুটি শেষের 10 s এ প্রথম 10 s এর চেয়ে বেশি দূরত্ব অতিক্রম করেছে। বস্তুটি 20 এ মোট কত দূরত্ব অতিক্রম করে ?
- ৫। পরস্পর সমকোণে ছেদকারী একটি চৌরাস্তায় সিগনালে লালবাতি থাকা অবস্থায় একজন মোটর সাইকেল আরোহী ট্রাফিক আইন অমান্য করে স্থির অবস্থান থেকে 5 m s⁻² ত্বেণে সোজা যাত্রা করলেন। কিন্তু ডান দিক থেকে আগত দ্রুতগামী একটি ট্রাক মোটর সাইকেলকে 1500 N বলে ধাক্কা দিল। মোটর সাইকেল ও তার আরোহীর ভর যথাক্রমে 230 kg এবং 70 kg।

- ক. সংঘর্ষ কী ?
- খ. বলের ঘাত বলতে কী বোঝ ?
- গ. উদ্দীপকে উল্লেখিত $5~{
 m m~s^{-2}}$ তুরণ সৃষ্টিতে মোটর সাইকেলের উপর কত বল প্রযুক্ত হয়েছিল ?
- ঘ. আঘাতের পর মোটর সাইকেলের ত্বরণ কত হয়েছিল গাণিতিক বিশ্লেষণের মাধ্যমে বের কর।

- ৬। কোনো বস্তুতে বল প্রয়োগ করলে ত্বরণ সৃষ্টি হয়। ত্বরণ প্রযুক্ত বলের সমানুপাতিক।
 - নিচের প্রশ্নগুলোর উত্তর দাও:
 - ক, কৌণিক ভরবেগ কী ?
 - খ. কেন্দ্রমুখী বলের মান কোন কোন বিষয়ের উপর কীভাবে নির্ভর করে ?
 - গ. F=0 হলে নিউটনের গতি সংক্রান্ত কোন্ সূত্র পাওয়া যায় ho গাণিতিকভাবে বিশ্লেষণ কর।
 - ঘ. কোন স্থির বস্তুর উপর বল প্রযুক্ত হলে নির্দিষ্ট সময়ে এটি নির্দিষ্ট দূরত্ব অতিক্রম করে। গাণিতিক বিশ্লেষণের মাধ্যমে দেখাও যে, বল প্রয়োগ বন্ধ হয়ে গেলে এর পর ঐ একই সময়ে বস্তুটি পূর্বের চেয়ে দ্বিগুণ দূরত্ব অতিক্রম করে।
 - আমরা জানি যে, প্রপেলার প্লেন যখন ওড়ে তখন বাতাসে চাপ দেয়। বাতাস উল্টা চাপ দেয় বলে এই প্লেন চলতে পারে, কিন্তু রকেট চলে মহাশূন্যে যেখানে কোনো বাতাস নেই। রকেট যখন চলে তখন রকেট থেকে নির্দিষ্ট হারে গ্যাস নির্গত হতে থাকে। এই গ্যাস নির্গত না হলে রকেট চলত না আর মহাশূন্যের অনেক কিছুই আমাদের জানা হতো না।

নিচের প্রশ্নগুলোর উত্তর দাও:

ক. ভরবেগ কী ?

91

- খ. ভরবেগের নিত্যতা সূত্র ব্যাখ্<mark>যা কর।</mark>
- গ. বাহ্যিক বলের প্রভাব ছাড়<mark>া দুটি</mark> বস্তু একে অপরের উপর বল প্রয়োগ করতে পারে। কোনো এক সময়ে এরা একে অপরের উপর বল প্র<mark>য়োগ করায় এদের</mark> সংঘর্ষ ঘটল। দেখাও যে, এদের সংঘর্ষ-পূর্ব ভরবেগ ও সংঘর্ষ পরবর্তী ভরবেগ সমান।
- ঘ. বাতাস না থাকলেও র<mark>কেট</mark> কেন চলছে ? কোন নীতির উপর ভিত্তি করে চলছে ? এ <mark>নীতি</mark>র সাহায্যে কোনো নির্দিষ্ট মুহূর্তের রকেটের ত্বর<mark>ণ বের</mark> কর।
- ৮। 1500 kg ভরের একটি গাড়<mark>ি 25 m s⁻¹ দ্রুতিতে চলছিল। কিন্তু চলার পথে গাড়িটি</mark> এক সময় এর সামনে স্থির থাকা 1000 kg ভরের আরেকটি গাড়িকে ধাকা দিল। ধাকার পর গাড়ি দুটি একত্রিত হয়ে 75 মিটার পিছলিয়ে থেমে গেল।

নিচের প্রশ্নগুলোর উত্তর দাও:

- ক. সংঘর্ষ কী ?
- খ. ঘাত বল বলতে কী বোঝ ?
- গ. সংঘর্ষের পর গাড়ি দুটির ভরবেগ সমান বিবেচনা করে তাদের গতি শক্তির অনুপাত বের কর।
- ঘ. গাণিতিক বিশ্লেষণের মাধ্যমে চলমান গাড়ির উপর বাধা দানকারী বলের মান বের করা সম্ভব কি না বর্ণনা কর।
- ৯। একজন প্রশিক্ষণার্থী সৈনিক 6 kg ভরের একটি বন্দুক থেকে $10~{
 m g}$ ভরের একটি গুলি $300~{
 m m~s^{-1}}$ বেগে ছোঁড়লেন। এর ফলে তিনি তার কাধে $0.5~{
 m m~s^{-1}}$ বেগের একটি ধাক্কা অনুভব করলেন।

- ক. নিউটনের গতির দ্বিতীয় সূত্রটি বিবৃত কর।
- খ. ভরবেগের নিত্যতা সূত্রটি ব্যাখ্যা কর।
- গ. গুলি ছোঁড়লে বন্দুক পেছন দিকে ধাক্কা দেয় কেন ?
- ঘ. উদ্দীপকে বর্ণিত ঘটনায় ভরবেগ সংরক্ষিত হয় কি না যাচাই কর।

১০। 5~kg ভরের একটি বস্তু $4~m~s^{-1}$ বেগে উত্তর দিকে চলছে। 3~kg ভরের অপর একটি বস্তু $2~m~s^{-1}$ বেগে দক্ষিণ দিকে চলছে। কোনো এক সময় বস্তু দুটির মধ্যে সংঘর্ষের ফলে এরা মিলে এক হয়ে গেল।

নিচের প্রশ্নগুলোর উত্তর দাও:

- ক. কেন্দ্ৰমুখী বল কী?
- খ. অস্থিতিস্থাপক সংঘর্ষ কাকে বলে ?
- গ. মিলিত বস্তুটি কোন দিকে কত বেগে চলবে ?
- ঘ. দ্বিতীয় বস্তুর ভর প্রথম বস্তুর ভরের তিনগুণ করা হলে মিলিত বস্তুর বেগের পরিবর্তন কত হবে ?
- ১১। ভরবেগের নিত্যতা সূত্র আমাদের জীবনে অনেক গুরুত্বপূর্ণ। এর উপর ভিত্তি করে সম্ভব হয়েছে মহাকাশ অভিযান। একটি শাটল মহাকাশ যানের ভর $3\times 10^3~{
 m kg}$ এবং জ্বালানির ভর $50~{
 m kg}$ । এতে জ্বালানি $5~{
 m kg}~{
 m s}^{-1}$ হারে ব্যবহৃত হয় এবং $150~{
 m m~s}^{-1}$ সুষম দ্রুতিতে নির্গত হয়।

নিচের প্রশ্নগুলোর উত্তর দাও:

- ক. নিউটন কে ?
- খ. কৌণিক ভরবেগের নিত্যতার সূ<mark>ত্রটি ব্যাখ্যা কর।</mark>
- গ. উদ্দীপকে উল্লেখিত শাটল <mark>যানের উপর</mark> ধাক্কা নির্ণয় কর।
- ঘ. ভরবেগের নিত্যতার সূত্র<mark>টি প্রতি</mark>পাদন করে শাটল যানের উপর ধাক্কার রাশি<mark>মালাটি</mark> নির্ণয় কর।
- ১২। অ্যাপোলো ও স্কাই ল্যাব মিশনের মহাকাশযানগুলো উৎক্ষেপণের জন্য ব্যবহৃত স্যাটার্ন-৫ রকেটের জ্বালানির নির্গমন বেগ $3.10\times 10^3~{
 m m}~{
 m s}^{-1}$ মহাশূন্যযানসহ রকেটের মোট ভর $2.45\times 10^6~{
 m kg}$, যার $1.70\times 10^6~{
 m kg}$ জ্বালানির ভর $1.70\times 10^6~{
 m kg}$

নিচের প্রশ্নগুলোর উত্তর দাও:

- ক. কৌণিক তুরণ কী ?
- খ. কৌণিক ভরবেগের দি<mark>ক কী</mark>ভাবে পাওয়া যায় ?
- গ. স্যাটার্ন-৫ কে উৎক্ষেপ<mark>ণ মঞ্চ</mark> থেকে কেবল উত্তোলনের জন্য প্রয়োজনীয় ধা<mark>ক্কা নির্ণ</mark>য় কর।
- ঘ. রকেটের ত্বরণের জন্য <mark>একটি</mark> রাশিমালা নির্ণয় করে উৎক্ষেপণের মুহু<mark>র্তে তার</mark> ত্বরণ নির্ণয় কর এবং গাণিতিক বিশ্লেষণের মাধ্যমে দেখাও <mark>যে, উৎক্ষেপ</mark>ণের পর তার ত্বরণ বা<mark>ড়তে থাকে</mark>।
- ১৩। 200 kg ভরের একখানি স্থিরভাবে <mark>ভাসমান ভেলার দুই বিপরীত প্রান্তে দু</mark>জন সাঁতারু দাঁড়িয়ে আছেন। তাদের ভর যথাক্রমে 40 kg ও 70 kg। সাঁতারুদ্বয় প্রত্যেকে একসাথে 4 m s⁻¹ অনুভূমিক বেগে ভেলা থেকে ঝাঁপ দেন। নিচের প্রশ্নগুলোর উত্তর দাও :
 - ক. বলের ঘাত কী ?
 - খ. গুলি ছোঁড়লে বন্দুক পেছন দিকে ধাক্কা দেয় কেন ?
 - গ. ভরবেগের সংরক্ষণ সূত্রটি প্রতিপাদন কর।
 - ঘ. গাণিতিক বিশ্লেষণের সাহায্যে দেখাও যে, উদ্দীপকে উল্লেখিত ভেলাটি স্থির না থেকে $40~{
 m kg}$ ভরের সাঁতারু যে দিকে ঝাঁপ দেন সেদিকে $0.6~{
 m m~s^{-1}}$ বেগে গতিশীল হবে।
- ১৪। একটি সিলিন্ডারের ভর $50~{
 m kg}$ এবং ব্যাসার্ধ $0.20~{
 m m}$ । সিলিন্ডারটির অক্ষের সাপেক্ষে এর জড়তার ভ্রামক $1~{
 m kg}~{
 m m}^2$ । সিলিন্ডারটি $2~{
 m m}~{
 m s}^{-1}$ বেগে অনুভূমিকভাবে গড়াচ্ছিল।

- ক. টৰ্ক কী ?
- খ. কৌণিক ভরবেগের সংরক্ষণ সূত্রটি বর্ণনা কর।

- গ. সিলিভারটির কৌণিক বেগ নির্ণয় কর।
- ঘ. সিলিভারটির মোট গতি শক্তি জানা সম্ভব কি না গাণিতিক বিশ্লেষণের মাধ্যমে যাচাই কর।
- ১৫। একটি ধাতব গোলকের ভর 0.05 kg। এটিকে 1 m লম্বা একটি সুতার এক প্রান্তে বেঁধে প্রতি মিনিটে 300 বার ঘুরানো হচ্ছে।

নিচের প্রশ্নগুলোর উত্তর দাও:

- ক. জড়তার ভ্রামক কী?
- খ. চক্রগতির ব্যাসার্ধ বলতে কী বুঝ ?
- গ. গোলকটির কৌণিক ভরবেগ নির্ণয় কর।
- ঘ. ঘূর্ণনরত অবস্থায় গোলকটির কৌণিক ভরবেগ সংরক্ষিত হচ্ছে। তোমার উত্তরের সপক্ষে যথাযথ যুক্তি দাও।
- ১৬। আমরা জানি যে, কোনো বস্তুর উপর বল প্রয়োগে ত্বরণ সৃষ্টি হয়, কিন্তু আমাদের দৈনন্দিন অভিজ্ঞতা বলে যে, কৌণিক ত্বরণের সাথে সংশ্লিষ্ট রাশি বল নয়। দেখা গেছে যে, কোনো দরজার উপর প্রযুক্ত বল যে কৌণিক ত্বরণ সৃষ্টি করে তা নির্ভর করে শুধুমাত্র বলের উপর নয়, এটা নির্ভর করে বল এবং বল কোথায় প্রয়োগ করা হয়েছে আর কোনদিকে প্রয়োগ করা হয়েছে তার উপর। দরজার কবজার উপর সরাসরি প্রযুক্ত বল কোনো কৌণিক ত্বরণই সৃষ্টি করে না, কিন্তু একই মানের বল যদি দরজার বাইরের প্রান্তে দরজার সাথে লম্বভাবে প্রয়োগ করা হয়, তাহলে সর্বোচ্চ কৌণিক ত্বরণ সৃষ্টি করে।

নিচের প্রশ্নগুলোর উত্তর দাও:

- ক. কৌণিক ত্বরণ কী?
- খ. টর্ক কী ? ব্যাখ্যা কর।
- গ. একটি চাকার ভর $4~{
 m kg}$ <mark>এবং</mark> চক্রগতির ব্যাসার্ধ $25~{
 m cm}$ । এর জড়তার ভ্রামক কৃত্র গুচাকাটিতে $2~{
 m rad}~{
 m s}^{-2}$ কৌণিক ত্বরণ সৃষ্টি করতে কৃত্র মানের টর্ক প্রয়োগ করতে হবে ?
- ঘ. টর্ক ও কৌণিক ত্বরণের সম্প<mark>র্ক বে</mark>র কর।
- ১৭। বৈদ্যুতিক মোটরের সাহায্যে r ব্যা<mark>সার্ধের এ</mark>কটি বৃত্তাকার চাকতিকে তার কেন্দ্র দি<mark>য়ে অভিলম্বভা</mark>বে গমনকারী অক্ষের সাপেক্ষে ω সমকৌণিক বেগে ঘুরানো <mark>হচ্ছিল। সুই</mark>চ বন্ধ করায় এটি α সমকৌণিক মন্দনে চলে স্থির হয়ে গেল। নিচের প্রশ্নগুলোর উত্তর দাও:
 - ক. টর্কের মাত্রা নির্ণয় কর।
 - খ. প্রমাণ কর যে, একক সমকৌণিক বেগে আবর্তনরত কোনো দৃঢ় বস্তুর জড়তার ভ্রামক, সংখ্যাগতভাবে এর গতি শক্তির দ্বিগুণ।
 - গ. চাকতিটি থেমে যাওয়ার আগে এর প্রান্তের কোনো কণা কত রৈখিক দূরত্ব অতিক্রম করে নির্ণয় কর।
 - ঘ. চাকতি থামার সময় তার (i) প্রান্তের কোনো বিন্দুতে এবং (ii) প্রান্ত ও কেন্দ্রের ঠিক মধ্যবিন্দুতে কত টর্ক প্রযুক্ত হয়েছিল গাণিতিক বিশ্লেষণের মাধ্যমে বের কর।
- ১৮। রিমন $1~{
 m kg}$ ভরের কোনো চাকতির উপর স্পর্শক বরাবর $20~{
 m N}$ বল প্রয়োগ করলো । ফলে চাকতির উপর একটি টর্কের সৃষ্টি হলো এবং চাকতিটিতে $5~{
 m rad~s^{-2}}$ কৌণিক ত্বরণ উৎপন্ন হলো ।

- ক. কৌণিক ভরবেগের একক নির্ণয় কর।
- খ. কেন্দ্রমুখী বলের মান কোন্ কোন্ বিষয়ের উপর কীভাবে নির্ভর করে ?
- গ. চাকতির চক্রগতির ব্যাসার্ধ 15 cm হলে এর উপর টর্কের মান কত ?
- ঘ. রিমনকে চক্রগতির ব্যাসার্ধের সাথে টর্কের সম্পর্ক স্থাপন করতে বলায় সে প্রথমে টর্কের সাথে কৌণিক ত্বরণের সম্পর্ক বের করে পরে ঈম্পিত সম্পর্কটি বের করলো । রিমন কীভাবে এটি করেছিল বিশ্লেষণ কর।

১৯। একটি নিরেট সিলিন্ডতরের ভর M, ব্যাসার্ধ r, দৈর্ঘ্য l এবং জড়তার ভ্রামক I। এটি নিজ অক্ষের সাপেক্ষে ω সমকৌণিক বেগে ঘুরছিল।

নিচের প্রশ্নগুলোর উত্তর দাও:

- ক. কৌণিক ভরবেগ কী?
- খ. কৌণিক ভরবেগের সংরক্ষণশীলতার সার্বজনীনতা ব্যাখ্যা কর।
- গ. সিলিভারটির কৌণিক ভরবেগের সাথে কৌণিক বেগের সম্পর্ক স্থাপন কর।
- ঘ. চক্রগতির ব্যাসার্ধ কাকে বলে ? গাণিতিক বিশ্লেষণের মাধ্যমে প্রমাণ কর যে, সিলিভারটির চক্রগতির ব্যাসার্ধ K তার ব্যাসার্ধ r এর 70.7~%।
- ২০। রহমান সাহেব তার স্থির মোটর সাইকেলে চড়ে $1.5~{
 m m~s^{-2}}$ ত্বরণ সহকারে চালানো শুরু করলেন। উক্ত মোটর সাইকেলের একটি চাকার ভর $5~{
 m kg}$ এবং ব্যাসার্ধ $30~{
 m cm}$ ।

নিচের প্রশ্নগুলোর উত্তর দাও:

- ক. কৌণিক বেগ কী?
- খ. কৌণিক ভরবেগের মাত্রা নির্ণয় কর।
- গ. 10 সেকেন্ড উদ্দীপকে উল্লেখি<mark>ত একটি চাকার কৌণিক সরণ কত</mark> হবে ?
- ঘ. এই ত্বরণ সৃষ্টির জন্য কত টর্ক প্রয়োগ করতে হবে তা নির্ণয় করা সম্ভব কি না গাণিতিক বিশ্লেষণের মাধ্যমে ব্যাখ্যা করে বুঝিয়ে দাও।
- ২১। একটি ফ্লাই হুইলের জ<mark>ড়তার ভ্রা</mark>মক 100 kg m²। ফ্লাই হুইলটি প্রতি মি<mark>নিটে 5</mark>0000 বার ঘুরছিল। সুষম ব্রেক প্রয়োগ করে একে 30 সেকেন্ড থামানো হলো।

নিচের প্রশ্নগুলোর উত্তর দাও:

- ক. কৌণিক ভরবেগ<mark> কী</mark> ?
- খ. দেখাও যে, এক<mark>ক সম</mark>কৌণিক বেগে ঘূর্ণায়মান কোনো দৃঢ় বস্তুর জড়তার <mark>ভ্রামক</mark>, সংখ্যাগতভাবে এর কৌণিক ভরবেগের সমান।
- গ. ফ্লাই হুইলে প্রযুক্<mark>ত টর্কের</mark> মান কত ?
- ঘ. থেমে যাওয়ার আ<mark>গে ফ্লাই</mark> হুইলটির পক্ষে 25000 বার ঘুরা সম্ভব কি <mark>না গাণিতিক বিশ্লেষণের মাধ্যমে যাচাই</mark> কর।
- ২২। মিন্টু একটি সুতলীর এক প্রান্তে 1 kg ভরের একটি বস্তু বেঁধে অনুভূ<mark>মিকভা</mark>বে বৃত্তাকার পথে প্রতি মিনিটে 75 বার ঘুরাচ্ছে। সুতলীর দৈর্ঘ্য 1 m এবং এটি সর্বোচ্চ 100 N টান সহ্য করতে পারে । মিন্টু যখন বস্তুটিকে ক্রমশ জোরে ঘুরাতে শুরু করল, এক সময় সুতলী ছিঁড়ে গেল।

নিচের প্রশ্নগুলোর উত্তর দাও:

- ক. জড়তার ভ্রামক কী ?
- খ. কেন্দ্রমুখী বল কোন্ কোন্ বিষয়ের উপর নির্ভর করে ?
- গ. মিন্টু যখন প্রতি মিনিটে 75 বার ঘুরাচ্ছিল তখন সুতলীর উপর কত টান পড়েছিল ?
- ঘ. সুতলী ছেঁড়ার মুহূর্তে বস্তুর রৈখিক বেগ ও কৌণিক বেগ নির্ণয় করা সম্ভব কি না যাচাই কর।
- ২৩। 0.250 kg ভরের কোনো বস্তুকে 75 cm লম্বা একটি সুতার সাহায্যে অনুভূমিক বৃত্তাকার পথে ঘুরানো হচ্ছে। এটি স্থির অবস্থা থেকে সমকৌণিক ত্বরণে ঘোরা আরম্ভ করে 3 মিনিট পর থেকে প্রতি মিনিটে 180 বার করে ঘুরছে। নিচের প্রশ্নগুলোর উত্তর দাও:

क. उर्क की ?

- খ. কৌণিক ভরবেগের নিত্যতার সূত্র একটি সার্বজনীন সূত্র কেন ব্যাখ্যা কর।
- গ. বস্তুটির উপর কী পরিমাণ টর্ক ক্রিয়া করেছে তার মান নির্ণয় কর ।

- ঘ. 3 মিনিট পর থেকে বস্তুর উপর কী পরিমাণ টান কাজ করছে ? এই টানের মান চারগুণ করা হলে কৌণিক বেগের কী পরিবর্তন হবে গাণিতিকভাবে বিশ্লেষণ করে বুঝিয়ে দাও।
- ২৪। বোরের হাইড্রোজেন প্রমাণুর মডেলে একটি ইলেক্ট্রন একটি প্রোটনের চারদিকে $5.2\times 10^{-11}~{
 m m}$ ব্যাসার্ধের বৃত্তাকার পথে $2.18\times 10^6~{
 m m}~{
 m s}^{-1}$ বেগে প্রদক্ষিণ করে । ইলেক্ট্রনের ভর $9.1\times 10^{-31}~{
 m kg}$.

নিচের প্রশ্নগুলোর উত্তর দাও:

- ক. জডতার ভ্রামক কিসের উপর নির্ভর করে ?
- খ. টর্কের দিক কীভাবে পাওয়া যায় ব্যাখ্যা কর।
- গ. উদ্দীপকের আলাকে ইলেক্সনের কৌণিক বেগ নির্ণয় কর।
- ঘ. ইলেক্ট্রন কক্ষপথ থেকে কেন ছিটকে পড়ছে না উদ্দীপকের আলোকে বিশ্লেষণ কর। যে বল ইলেক্ট্রনকে কক্ষপথে আবদ্ধ রাখে তার মান কত ?
- ২৫। চারজন বালক সাইকেল চালিয়ে যাচ্ছিল। হঠাৎ একটি রাস্তার বাঁক অতিক্রম করতে গিয়ে তিনজন উল্টে পড়ে গেল। একজন পড়ল না। লোকজন দৌড়ে এসে তিনজনকৈ ওঠাল। একজন লোক ঐ তিনজনকৈ বলল যে, সাইকেল চালিয়ে রাস্তার বাঁক অতিক্রম করার কায়দা জানতে হয়, নইলে উল্টেতো পড়বেই। তার কথা শুনে অন্যরা তার মুখের দিকে অবাক হয়ে তাকিয়ে থাকল।

নিচের প্রশ্নগুলোর উত্তর দাও:

- ক. কেন্দ্ৰমুখী বল কী?
- খ. কৌণিক ভরবেগের সংর<mark>ক্ষণ সূ</mark>ত্র ব্যাখ্যা কর।
- গ. প্রমাণ কর যে, কোনো <mark>স্থির অ</mark>ক্ষের চারদিকে ঘূর্ণায়মান একটি বস্তুর টর্ক তার জড়<mark>তার ভ্রামক ও কৌণিক ত্</mark>বণের গণ্ণফলের সমান।
- ঘ. সাইকেলে রাস্তার বাঁক <mark>অতিক্রম করার সময় কায়দা না জানলে উল্টে পড়তে হয়—কা</mark>য়দা<mark>টা কী ? বাঁক নে</mark>য়ার সময় একটি নির্দিষ্ট কো<mark>ণে হে</mark>লে গেলে পড়ে যাওয়ার সম্ভাবনা থাকে না। এই কোণের মান বের কর। আরোহীর বেগ বেশি হলে এবং বাঁকের ব্যাসার্ধ কম হলে কী হবে ?
- ২৬। চট্টগ্রাম কক্সবাজার হাইওয়ের এ<mark>কটি বাঁকে</mark>র ব্যাসার্ধ 250 m। নিরাপদ গাড়ি <mark>চালানোর</mark> জন্য রাস্তাটিকে অনুভূমিকের সাথে 4° কোণ করে ঢালু রাখা হয়েছে।

নিচের প্রশ্নগুলোর উত্তর দাও:

- ক. জডতার ভ্রামকের মাত্রা নির্ণয় কর।
- খ. কৌণিক ভরবেগের পরিবর্তনের হারের সাথে টর্কের সম্পর্ক ব্যাখ্যা কর।
- গ. একটি গাড়ি কী 50 km h-1 বেগে উক্ত বাঁক নিরাপদে অতিক্রম করতে পারবে ?
- ঘ. রাস্তাটির প্রস্থ 2 m হলে এবং এর এক পাশ অনুভূমিক থেকে কত উঁচুতে অবস্থিত চিত্রসহকারে গাণিতিকভাবে বিশ্লেষণ কর।
- ২৭। একটি গাড়ি রাস্তার 50 m ব্যাসার্ধবিশিষ্ট একটি বৃত্তাকার অংশে নিরাপদে সর্বোচ্চ 25 kmh⁻¹ বেগে বাঁক নিতে পারে।

- ক. টৰ্ক কী ?
- খ. বলের ঘাত বলতে কী বুঝ?
- গ. উদ্দীপকে উল্লেখিত রাস্তার ব্যাংকিং কোণ কত ?
- ঘ. বৃত্তাকার পথে সাইকেল চালানোর সময় আরোহীকে সাইকেলসহ কেন্দ্রের দিকে হেলে পড়তে হয় কেন যথাযথ যুক্তি ও সমীকরণসহ ব্যাখ্যা কর।

২৮। একটি হাইওয়ের প্রস্থ 4~m এবং একটি বাঁকের ব্যাসার্ধ 250~m। ফলে একটি গাড়ি সর্বোচ্চ $36~km~h^{-1}$ বেগে নিরাপদে বাঁক নিতে পারে।

নিচের প্রশ্নগুলোর উত্তর দাও:

- ক. কেন্দ্রমুখী তুরণ কী?
- খ. কেন্দ্রমুখী বল কিসের কিসের উপর নির্ভর করে?
- গ. উদ্দীপকে উল্লেখিত রাস্তার দুই পাশের উচ্চতার পার্থক্য নির্ণয় কর।
- ঘ. কোনো গাড়ি সর্বোচ্চ 60 km h⁻¹ বেগে বাঁক নেয়ার জন্য রাস্তার উচ্চতর প্রান্তের উচ্চতা আর কত বাড়াতে হবে গাণিতিক বিশ্লেষণের মাধ্যমে নির্ণয় কর।
- ২৯। সিমনের ভর $50~{
 m kg}$ । সে একটি মাঠে $25~{
 m m}$ ব্যাসার্ধের বৃত্তাকার পথে $15~{
 m km}~{
 m h}^{-1}$ বেগে $50~{
 m kg}$ ভরের একটি সাইকেল চালাচ্ছে।

নিচের প্রশ্নগুলোর উত্তর দাও:

- ক. চক্রগতির ব্যাসার্ধ কী ?
- খ. কোনো বস্তুর কৌণিক বেগ ক<mark>ত হলে এ</mark>র জড়তার ভ্রামক সংখ্যাগতভাবে এর গতি শক্তির দিগুণ হবে ?
- গ. সিমনকে বাঁক নেয়ার জন্য উল্লম্বের সাথে কত কোণে হেলতে হবে ?
- ঘ. গাণিতিক বিশ্লেষণের <mark>সাহায্</mark>যে দেখাও যে, সিমনের বেগ যত বেশি হবে <mark>এবং বাঁ</mark>কের ব্যাসার্ধ যত কম হবে তাকে তত বেশি হেলে থাকতে হবে।
- ৩০। $20~{
 m kg}$ ভরের একটি ব<mark>স্তু $10~{
 m m~s^{-1}}$ বেগে এসে $2~{
 m kg}$ </mark> ভরের একটি স্থির বস্তু<mark>র সাথে</mark> সংঘর্ষে লিপ্ত হয়ে $8~{
 m m~s^{-1}}$ বৈগে চলতে থাকে।

নিচের প্রশ্নগুলোর উত্তর দাও:

- ক, ঘাত বল কী ?
- খ. স্থিতিস্থাপক সংঘৰ্ষ <mark>বলতে</mark> কী বুঝ ?
- গ. সংঘর্ষের পর উদ্দীপ<mark>কে উল্লে</mark>খিত ২য় বস্তুর বেগ নির্ণয় কর।
- ঘ. স্থিতিস্থাপক সংঘর্ষের ফলে সমান ভরের দুটি বস্তু বেগ বিনিময় করে—গাণিতিক বিশ্লেষণের সাহায্যে তা প্রমাণ কর।
- ৩১। 40 kg এবং 60 kg ভরের দুটি বস্তু যথাক্রমে 10 m s⁻¹ ও 2 m s⁻¹ বেগে পরস্পর বিপরীত দিকে আসার সময় একে অপরকে ধাক্কা দিল। ধাক্কার পর বস্তুদ্বয় একত্রে যুক্ত হয়ে একটি বস্তু হয়ে গেল।

নিচের প্রশ্নগুলোর উত্তর দাও:

- ক. সংঘৰ্ষ কী ?
- খ. ভরবেগের সংরক্ষণ সূত্রটি বর্ণনা কর।
- গ. উদ্দীপকে উল্লেখিত মিলিত বস্তুটি কোন্ দিকে কত বেগে চলবে ?
- ঘ. সংঘর্ষটি স্থিতিস্থাপক না অস্থিতিস্থাপক গাণিতিক বিশ্লেষণের মাধ্যমে মতামত দাও।
- ৩২। টেনিস খেলোয়াড় মামুন প্রতিপক্ষের ধ্রুব বেগে আসা 300~g ভরের টেনিস বলের উপর র্যাকেট দিয়ে 24~N বল 1s ধরে প্রয়োগ করে। ফলে বলটি $50~m~s^{-1}$ বেগে প্রতিপক্ষের কাছে ফিরে গেল।

- ক. ভরবেগের নিত্যতার সূত্রটি বিবৃত কর।
- খ. অস্থিতিস্থাপক সংঘর্ষ বলতে কী বুঝ ?
- গ. টেনিস বলটি মামুনের র্যাকেটে কত বেগে আঘাত করেছিল ?
- ঘ. "বলের ঘাত ভরবেগের পরিবর্তনের সমান"। উদ্দীপকের তথ্য থেকে গাণিতিকভাবে এর যথার্থতা যাচাই কর।

গ–বিভাগ : সাধারণ প্রশু

- ১। বল কাকে বলে?
- ২। বলের বৈশিষ্ট্য কী কী ?
- ৩। মৌলিক বল কী ? [চ. বো. ২০১৬]
- ৪। জড়তা কাকে বলে ?
- ে। জড়তা হতে বলের ধারণা পাওয়া যায় কী ?—আলোচনা কর। [ব. বো. ২০১৯]
- ৬। কাচে গুলি করলে ছিদ্র হয় কিন্তু ঢিল ছুড়লে কাচ চূর্ণবিচূর্ণ হয়—ব্যাখ্যা কর। [য. বো. ২০১৬]
- ৭। ভর ও জড়তার ভ্রামকের মধ্যে পার্থক্য ব্যাখ্যা কর। [ঢা. বো. ২০১৫]
- ৮। নিউটনের প্রথম গতি সূত্রটি বিবৃত কর।
- ৯। নিউটনের দ্বিতীয় গতি সূত্রটি লিখ বা বিবৃত কর।
- ১০। ভরবেগ কাকে বলে ?
- ১১। ভরবেগের মাত্রা কী ?
- ১২। নিউটনের গতির দ্বিতীয় সূত্র থেকে প্র<mark>মাণ কর $\sum \overrightarrow{\mathbf{F}} = m \overrightarrow{\mathbf{a}}$ ।</mark>
- $oldsymbol{5}$ ৩। নিউটনের গতির দ্বিতীয় সূত্র থেকে <mark>প্রমাণ ক</mark>র যে, $ec{ extbf{F}}=m\overrightarrow{ extbf{a}}$ এবং এর থেকে প্র<mark>থম সূত্রটি</mark> প্রতিপাদন কর।
- ১৪। নিউটনের গতিবিষয়ক দ্বিতীয় সূ<mark>ত্র থেকে</mark> বল পরিমাপের রাশিমালা নির্ণয় কর এবং <mark>তা থেকে</mark> দেখাও যে, বস্তুর উপর নিটবল শূন্য হলে বস্তুর বেগ অ<mark>পরিব</mark>র্তিত থাকে।
- ১৫। বল কীভাবে ক্রিয়াশীল থাক<mark>লে একটি</mark> বস্তু সম্দ্রুতিতে গতিশীল থাকবে তা ব্যাখ্যা কর। <mark>ঢাি. ব</mark>ো. ২০১৭]
- ১৬। বলের একককে মৌলিক এক<mark>কের</mark> মাধ্যমে প্রকাশ কর। [চ. বো. ২০১৫]
- ১৭। ভরকে জাড্য ভর বলা হয় কে<mark>ন ? ব্যাখ্যা কর।</mark> [সি. বো. ২০১৯]
- ১৮। 1 পাউন্ডাল বলের সংজ্ঞা দাও<mark>।[রা.</mark> বো. ২০১৬]
- ১৯। উদাহরণসহ নিউটনের গতির তৃ<mark>তীয় সূ</mark>ত্র ব্যাখ্যা কর।
- ২০। বন্দুক হতে গুলি ছোড়ার সময় ব<mark>ন্দুক ও </mark>গুলির মধ্যে কোনটির গতিশক্তি বেশি ব্যাখ্য<mark>া কর।</mark>
- ২১। নিউটনের গতিসূত্রের সীমাবদ্ধতা কী <mark>?</mark>
- ২২। বালির উপর দিয়ে হাঁটা কষ্টসাধ্য—ব্যাখ্<mark>যা কর। [ব. বো. ২০১৯]</mark>
- ২৩। নিউটনের সংজ্ঞা দাও।
- ২৪। ভরবেগের সংরক্ষণ সূত্র লেখ। [য. বো. ২০১৬]
- ২৫। ভরবেগের সংরক্ষণ বা নিত্যতার সূত্র প্রতিপাদন বা প্রমাণ কর।
- ২৬। রকেট কীভাবে চলে ব্যাখ্যা কর এবং রকেটের উপর ধাক্কার রাশিমালা নির্ণয় কর।
- ২৭। ঘূর্ণন অক্ষ কাকে বলে ?
- ২৮। জড়তার ভ্রামক কাকে বলে ? [অভিনু প্রশ্ন (খ সেট) ২০১৮; চ. বো. ২০১৯)
- ২৯। জড়তার ভ্রামক 50 kg m² বলতে কী বোঝ? [রা. বো. ২০১৭]
- ৩০। জড়তার ভ্রামকের একক কী ?
- ৩১। জড়তার ভ্রামকের মান কী কী বিষয়ের উপর নির্ভর করে ?
- ৩২। ঘূর্ণন গতির ক্ষেত্রে জড়তার ভ্রামক বস্তুর ভরের সমতুল্য—ব্যাখ্যা কর। [কু. বো. ২০১৭]
- ৩৩। চক্রগতির ব্যাসার্ধ বলতে কী বোঝায় ? [অভিনু প্রশ্ন (ক সেট) ২০১৮]
- ৩৪। জড়তার ভ্রামকের সাথে চক্রগতির ব্যাসার্ধের সম্পর্ক ব্যাখ্যা কর। [চ. বো. ২০১৬]
- ৩৫। কোনো অক্ষের সাপেক্ষে একটি বস্তুর চক্রগতির ব্যাসার্ধ 0.9 m বলতে কী বোঝায় ? [ঢা. বো. ২০১৯]

- ৩৬। কৌণিক সরণ কাকে বলে ?
- ৩৭। কৌণিক বেগ কাকে বলে ?
- ৩৮। কৌণিক তুরণ কাকে বলে ?
- ৩৯। প্রমাণ কর যে, একক সমকৌণিক বেগে আবর্তনরত কোনো দৃঢ় বস্তুর জড়তার ভ্রামক, সংখ্যাগতভাবে এর গতি
 শক্তির দিগুণ।
- ৪১। টর্কের মাত্রা নির্ণয় কর।
- ৪২। টর্কের একক কী?
- ৪৩। প্রমাণ কর যে, কোনো স্থির অক্ষের চারদিকে ঘূর্ণায়মান একটি বস্তুর টর্ক তার জড়তার ভ্রামক ও কৌণিক ত্বণের গুণফলের সমান।
- ৪৪। দ্বন্দু কাকে বলে? [ঢা. বো. ২০১৯]
- ৪৫। কৌণিক ভরবেগ কাকে বলে <mark>? [ঢা. বো</mark>. ২০১৭; রা. বো. ২০১৫; ব. বো<mark>. ২০১৯</mark>]
- ৪৬। কোনো বস্তুর উপর ক্রিয়া<mark>শীল টর্ক</mark> কখন শূন্য হয় ? ব্যাখ্যা কর। [কু. বো. ২০<mark>১৯]</mark>
- ৪৭। কৌণিক ভরবেগের মা<mark>ত্রা কী</mark>?
- ৪৮। কৌণিক ভরবেগের এ<mark>কক নি</mark>র্ণয় কর।
- ৪৯। বৃত্তপথে ঘূর্ণনরত কো<mark>নো দৃ</mark>ঢ় বস্তুর কৌণিক ভরবেগের রাশিমালা নির্ণয় কর।
- ৫০। প্রমাণ কর, $L = I \omega$
- ৫১। দেখাও যে, একক সম<mark>কৌণিক</mark> বেগে ঘূর্ণনরত কোনো বস্তুর জড়তার ভ্রামক সংখ্যাগতভাবে এর কৌণিক ভরবেগের সমান। [চ. বো. ২০১৫]
- ৫২। ঘূর্ণন গতির ক্ষেত্রে নিউটনের গতি সূত্রগুলো বর্ণনা কর।
- ৫৩। কৌণিক ভরবেগের সংরক্ষণ সূত্রটি বর্ণ<mark>না ও ব্যাখ্যা কর।</mark>
- ৫৪। কেন্দ্রমুখী বল বলতে কী বুঝ ? [রা, বো. ২০১৭; দি. বো. ২০১৬]
- ৫৫। কেন্দ্রমুখী বলের মান কোন কোন বিষয়ের উপর কীভাবে নির্ভর করে ?
- ৫৬। ঘূর্ণনরত বস্তুর কৌণিক ভরবেগ কোন শর্তে শূন্য হয়—ব্যাখ্যা কর। [দি. বো. ২০১৯]
- ৫৭। বৃত্তাকার পথে ঘূর্ণনশীল বস্তুর কেন্দ্রমুখী বল ব্যাসার্ধের পরিবর্তনের সাথে পরিবর্তিত নয়—ব্যাখ্যা কর।[দি. বো. ২০১৬]
- १४ । किस्तियथी वल कारक वरल ?
- ৫৯। পানি ভর্তি বালতি উল্লম্ব তলে ঘুরালে পানি পড়ে না কেন ? ব্যাখ্যা কর। [মাদ্রাসা বোর্ড-২০১৯]
- ৬০। বক্রপথে সাইকেল আরোহীর গতি ব্যাখ্যা কর।
- ৬১। রাস্তার বাঁকে আরোহীকে ভেতরের দিকে আনত হতে হয় কেন ? ব্যাখ্যা কর।
- ৬২। বাঁকা পথে সাইকেল আরোহীর উল্লম্বের সাথে হেলানো কোণের রাশিমালা নির্ণয় কর এবং দেখাও যে, তার বেগ বৃদ্ধি পেলে তাকে বেশি হেলতে হবে।
- ৬৩। মোটর চলাচলের রাস্তার বা রেলপথের ব্যাংকিং বলতে কী বুঝ ? ব্যাংকিং কোণের জন্য সমীকরণ নির্ণয় কর।
- ৬৪ ৷ রাস্তায় ব্যাংকিং প্রয়োজনীয়তা ব্যাখ্যা কর ৷ [ঢা. বো. ২০১৬; চ. বো. ২০১৭]

- ৬৫। রাস্তার বাঁকের ভিতরের প্রান্ত থেকে বাইরের প্রান্ত উঁচু হয় কেন ? [য. বো. ২০১৬; দি. বো. ২০১৯]
- ৬৬। বাঁক নেয়া রাস্তার পাশে সতর্কীকরণ সাইন বোর্ডে গাড়ির গতিবেগ 60 km h⁻¹ লেখা থাকে কেন ? ব্যাখ্যা কর।

[ব. বো. ২০১৬]

- ৬৭। রাস্তার বাঁকযুক্ত অংশ কোন দিকে কত কোণে ঢালু রাখা হয় এর কারণসহ ব্যাখ্যা কর। [ঢা. বো. ২০১৭]
- ৬৮। ঘাত বল কাকে বলে ? [চ. বো. ২০১৫; ব. বো. ২০১৬; মাদ্রাসা বোর্ড ২০১৯]
- ৬৯। বলের ঘাত বলতে কী বুঝ ? [য. বো. ২০১৭; কু. বো. ২০১৯]
- ৭০। বলের ঘাত ভরবেণের পরিবর্তনের সমান—মাত্রা সমীকরণের সাহায্যে ব্যাখ্যা কর। [কু. বো. ২০১৫]
- ৭১। বলের ঘাতের বৈশিষ্ট্য কী কী ? [কু. বো. ২০১৫]
- ৭২। সংঘর্ষ কাকে বলে ?
- ৭৩। স্থিতিস্থাপক সংঘর্ষ ও অস্থিতিস্থাপক সংঘর্ষের মধ্যে পার্থক্য কী ? [ঢ়া. বো. ২০১৭]
- ৭৪। স্থিতিস্থাপক সংঘর্ষ কাকে বলে? [ঢা. বো. ২০১৫; কু বো. ২০১৯; দি. বো. ২০১৯]
- ৭৫। সমান ভরের দুটি বস্তুর মধ্যে স্থিতিস্থাপক সং<mark>ঘর্ষ হলে বস্তু দুটি বেগ বিনিময় করে</mark>—ব্যাখ্যা কর। বা. ২০১৫; সি. বো. ২০১৭]
- ৭৬। দেখাও যে, দুটি সমান ভরের বস্তুর <mark>মধ্যে</mark> একটি যদি স্থির থাকে তাহলে সংঘ<mark>র্ষের ফলে</mark> গতিশীল বস্তুটি থেমে যাবে এবং স্থির বস্তুটি গতিশীল বস্তুর বেগ নিয়ে চলতে থাকবে।
- ৭৭। m_1 ও m_2 ভরের বস্তু v_{1i} ও v_{2i} বেগে পরস্পরের সাথে স্থিতিস্থাপক সংঘর্ষে লিপ্ত হলে <mark>সংঘর্ষের পরে বস্তুদ্বয়ের বেগের</mark> রাশিমালা নির্ণয় কর।
- ৭৮। একটি ভারী স্থির বস্তু ও হাল<mark>কা গতি</mark>শীল বস্তুর স্থিতিস্থাপক সংঘর্ষে তাদের বেগের পরিবর্<mark>তন ব্যা</mark>খ্যা কর।

যি. বো. ২০১৭

- ৭৯। দুটি বস্তু সংঘর্ষের পর এঙ্গ আ<mark>টকে গে</mark>লে সংঘর্ষটি স্থিতিস্থাপক হবে কী ? ব্যাখ্যা কর। <mark>[চ. বে</mark>া. ২০১৯]
- ৮০। দুটি বস্তু সংঘর্ষের পর এক সঙ্গে <mark>আটকে</mark> গেলে সংঘর্ষটি স্থিতিস্থাপক হবে কী ? ব্যাখ্য<mark>া কর।</mark> [চ. বো. ২০১৯]
- ৮১। একজন দৌড়বিদ দৌড়ের শুরুত<mark>ে সামনের</mark> দিকে ঝুঁকে থাকেন কেন ? [ঢা. বো. <mark>২০১৫]</mark>
- ৮২। একজন সাঁতারু যখন ডাইভিং মঞ্<mark>চ থেকে সুইমিংপুলে ডাইভ দেন তখন তার শ</mark>রীরের অঙ্গভঙ্গি পরিবর্তন করেন কেন হ
- ৮৩। একজন ক্রিকেট খেলায়াড় মাঠে বল ধরার সময় হাত পিছনে নেন কেন ? ব্যাখ্যা কর। [রা. বো. ২০১৯]

ঘ-বিভাগ: গাণিতিক সমস্যা

সেট I

[সাধারণ সমস্যাবলি]

- ১। 36 kg ভরের একটি বস্তুর উপর কত বল প্রযুক্ত হলে 1 মিনিটে এর বেগ 15 km h^{-1} বৃদ্ধি পাবে ? $[\c b : 2.5 \text{ N}]$
- ২। 10 g ভরের একটি বুলেট 300 m s $^{-1}$ বেগে এক টুকরা কাঠের মধ্যে 4.5 cm প্রবেশ করে থেমে গেল। বাধাদানকারী বলের মান নির্ণয় কর। ঐ দূরত্ব যেতে বুলেটটির কত সময় লেগেছে ? [উ: 10^4 N: 3×10^{-4} s]
- ৩। 45 km h⁻¹ বেগে চলন্ত একজন মোটর গাড়ির চালক হঠাৎ 26 m সামনে একটি বালককে দেখতে পেলেন। সাথে সাথে তিনি ব্রেক চেপে দিলেন। ফলে গাড়িটি বালকের 1 m সামনে এসে থেমে গেল। গাড়িটি থামাতে কত সময় লাগল এবং এর উপর কত বল প্রযুক্ত হলো? আরোহী সমেত গাড়ির ভর 1000 kg। [উ: 4 s; 3125 N]

- 8। 20 N এর একটি বল 5 kg ভরের একটি স্থির বস্তুর উপর ক্রিয়া করে। যদি 5 s পর বলের ক্রিয়া বন্ধ হয়ে যায়, তবে প্রথম থেকে 12 s-এ বস্তু কত দূর যাবে ?
- ৫। একটি বস্তু স্থির অবস্থায় ছিল। 15 N এর একটি বল এর উপর 4 সেকেন্ড ধরে কাজ করে এবং তারপর আর কোনো কাজ করল না। বস্তুটি এরপর 9 সেকেন্ডে 54 m দূরত্ব গেল। বস্তুটির ভর কত ? [উ: 10 kg] [রুয়েট ২০১২-২০১৩; চ. বো. ২০০৩]
- ৬। $5~{
 m kg}$ ভরের একটি বন্দুক থেকে $10~{
 m g}$ ভরের গুলি $400~{
 m m~s^{-1}}$ বেগে বেরিয়ে গেল। বন্দুকের পশ্চাৎ বেগ কত ? $[{
 m \coloredge}: 0.8~{
 m m~s^{-1}}]$
- ৭। স্কেটিং জুতা পায়ে দাঁড়ানো রুমার কাছে নয়ন $3.3~{
 m kg}$ ভরের একটি বল ছোঁড়ে। রুমার ভর $48~{
 m kg}$ । বলটি লোফার সাথে সাথে রুমা $0.32~{
 m m~s^{-1}}$ বেগে গতিশীল হয়। রুমা যখন বলটি ধরে তখন বলটির বেগ কত ছিল ?

[উ: 4.97 m s⁻¹]

- ৮। 600 kg ভরের একখানি গাড়ি 20 m s^{-1} বেগে সরলপথে চলতে চলতে 1400 kg ভরের একখানি স্থির ট্রাকের সাথে ধাকা খেয়ে আটকে গোল। মিলিত গাড়ি দুটির বেগ কত হবে ? [উ: 6 m s^{-1}]
- ৯। 4 kg ভরের একটি হাঁসপাথি একটি গাছের ভালে বসে আছে। পাথিটিকে 20 g ভরের একটি বুলেট 200 m s⁻¹ বেগে অনুভূমিকভাবে আঘাত করল। বুলেটটি পাথির মধ্যে রয়ে গেলে পাথিটির অনুভূমিক বেগ কত হবে নির্ণয় কর। [উ: 0.995 m s⁻¹]
- ১০। 40 kg এবং 60 kg ভরের দুটি বস্তু যথাক্রমে 10 m s⁻¹ ও 2 m s⁻¹ বেগে <mark>পরস্প</mark>র বিপরীত দিকে আসার সময় একে অপরকে ধাকা দি<mark>ল। ধা</mark>কার পর বস্তুদ্বয় একত্রে যুক্ত থেকে কত বেগে চলবে ? [উ: 2.8 m s⁻¹] [শা.বি.প্র.বি. ২০১৬–২০১<mark>৭; চ.</mark> বো. ২০০৫; ব. বো. ২০১২]
- ১১। 100 kg এবং 200 kg ভরের দুটি বস্তু যথাক্রমে 20 m s⁻¹ ও 10 m s⁻¹ বে<mark>গে প্র</mark>স্পর বিপরীত দিকে আসার সময় একে অপরকে ধা<mark>কা দিল</mark>। ধাক্কার পর বস্তুদ্বয় একত্রে যুক্ত থেকে কত বেগে কোন্ দিকে চলবে ?
 [উ: 0, বস্তুদ্বয় স্থির হয়ে যাবে।] [সি.বো. ২০০২]
- ১২। 3 kg ভরের একটি বল 2 m s⁻¹ বেগে পূর্বদিকে চলছে। 1 kg ভরের অপর একটি বল 2 m s⁻¹ বেগে পশ্চিম দিকে চলছে। কোনো এক সময় বল দুটির মধ্যে সংঘর্ষের ফলে এরা মিলে এক হয়ে গেল। মিলিত বলটি কত বেগে কোন্ দিকে চলবে ?
- ১৩। উৎক্ষেপণের পূর্বে একটি রকেট ও তার জ্বালানির ভর $1.9 \times 10^3~{
 m kg}$ । রকেটের সাপেক্ষে জ্বালানি $2.5 \times 10^3~{
 m m~s^{-1}}$ বেগে নির্গত হলে এবং জ্বালানি $7.4~{
 m kg~s^{-1}}$ হারে ব্যয়িত হলে রকেটের উপর ধাক্কা নির্ণয় কর। [উ: $1.85 \times 10^4~{
 m N}$]
- ১৪। $300~{\rm kg}$ ভরের কোনো নৌকার দুই গলুই থেকে $20~{\rm kg}$ এবং $25~{\rm kg}$ ভরের দুটি বালক যথাক্রমে $3.25~{\rm m~s^{-1}}$ এবং $2~{\rm m~s^{-1}}$ বেগে দুদিকে লাফ দেয়। নৌকাটি কত বেগে কোন দিকে চলবে ?

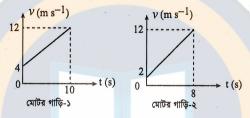
[উ: 25~kg ভরের বালক যে দিকে লাফ দেয় নৌকাটি সে দিকে $0.05~m~s^{-1}$ বেগে চলবে]

- ১৫। একটি চাকার ভর 6 kg এবং চক্রগতির ব্যাসার্ধ 40 cm। চাকাটি প্রতি মিনিটে 300 বার ঘুরে। এর জড়তার ভ্রামক এবং ঘূর্ণন গতিশক্তি বের কর। [উ: 0.96 kg m²; 473.26 J]
- ১৬। একটি চাকার ভর 5 kg এবং কোনো অক্ষের সাপেক্ষে চক্রগতির ব্যাসার্ধ 0.25 m। এর জড়তার ভ্রামক কত ? চাকাটিতে 4 rad s⁻² কৌণিক ত্বরণ সৃষ্টি করতে কত মানের টর্ক প্রয়োগ করতে হবে ?

[v: 0.3125 kg m²; 1.25 N m]

[য. বো. ২০০৮; চ. বো. ২০০১; রা. বো. ২০১১; দি. বো. ২০০৯; মদ্রাসা বোর্ড ২০১৫]

- ১৭। একটি নির্দিষ্ট অক্ষকে কেন্দ্র করে 13 rad s^{-1} কৌণিক বেগে ঘূর্ণনরত একটি চাকার গতিশক্তি 29 J। ঘূর্ণন অক্ষের সাপেক্ষে চাকাটির জড়তার ভ্রামক নির্ণয় কর। [উ: 0.34 kg m^2]
- ১৮। 5 kg ভরের একটি দৃঢ় বস্তু ঘূর্ণন অক্ষ থেকে 1.5 m দূরে 5 rad s । কৌণিক দ্রুতিতে ঘুরছে। এর জড়তার ভ্রামক এবং ঘূর্ণন গতিশক্তি নির্ণয় কর। [উ: 11.25 kg m²; 140.63 J]
- ১৯। একটি বিমানের প্রপেলারের ভর 70 kg এবং চক্রগতির ব্যাসার্ধ 75 cm। এর জড়তার ভ্রামক বের কর। একে 4 rev s⁻² কৌণিক ত্বরণ দিতে প্রয়োজনীয় টর্কের মান বের কর। টি: 39.38 kg m²; 989.23 N m]
- ২০। 6000 rad s^{-1} কৌণিক বেগে ঘূর্ণনরত একটি চাকার জড়তার ভ্রামক 80 kg m^2 । সুষম ব্রেক প্রয়োগ করে একে 30 s এ থামানো হলো। (ক) ব্রেক প্রয়োগ করা হলে এর কৌণিক ত্বরণ কত ? (খ) এই সময়ে এটি কতবার ঘুরবে? (গ) ব্রেকটি কত টর্ক সরবুরাহ করে ? [উ: (ক) -200 rad s^{-2} (খ) 14331.2 rev (গ) 16000 N m]
- ২১। একটি ধাতব গোলকের ভর $0.04~{
 m kg}$ । এটিকে $2~{
 m m}$ দীর্ঘ একটি সুতার এক প্রান্তে বেঁধে প্রতি সেকেন্ডে $5~{
 m diag}$ ঘুরানো হচ্ছে। গোলকটির কৌণিক ভরবেগ কত ? [${
 m w}$: $5.024~{
 m kg}~{
 m m}^2~{
 m s}^{-1}$] [রা. বো. ২০০৮]
- ২২। একটি অনুভূমিক তল বরাবর সূতায় বাঁধা একটি ঢিলকে সমদ্রুতিতে বৃত্তাকার পথে ঘুরানো হচ্ছে। ঢিলটির ভর $5~{
 m kg}$, বেগ $3~{
 m m~s^{-1}}$ এবং বৃত্তের ব্যাসার্ধ $1.2~{
 m m}$ হলে কেন্দ্রমুখী বল নির্ণয় কর।
- ২৩। সাইক্লোট্রন নামক একটি ত্বরক যন্ত্রে প্রোটন $80~{
 m cm}$ ব্যাসার্ধের বৃত্তাকার পথে <mark>যুরে।</mark> একটি তড়িৎ চুম্বক বৃত্তের কেন্দ্রের দিকে $8 \times 10^{-13} \, {
 m N}$ বল সরবরাহ করে। প্রোটনের ভর $1.67 \times 10^{-27} \, {
 m kg}$ হলে এর বেগ কত ?


[৳: 1.96 × 10⁷ m s⁻¹]

- ২৪। 4 g ভরবিশিষ্ট একটি বস্তুকে 1.5 m দীর্ঘ সুতার সাহায্যে বৃত্তাকার পথে ঘুরানো হচ্ছে। বস্তুটি 5 s এ 20 বার পূর্ণ আবর্তন করছে। সুতার টান নির্ণয় কর। [উ: 3.8 N] বি. বো. ২০০৭; কু. বো. ২০০৬].
- ২৫। 0.250 kg ভরের একটি পাথ<mark>রখণ্ডকে</mark> 0.75 m লম্বা একটি সুতার এক প্রান্তে বেঁধে বৃ<mark>ত্তাকা</mark>র পথে প্রতি মিনিটে 90 বার ঘুরালে সুতার উপর টান নির্ণয় কর। [উ: 16.66 N] [চ. বো. ২০০১]
- ২৬। কোনো মোটর সাইকেল আরোহী 100 m ব্যাসার্ধের বৃত্তাকার পথে কত বেগে ঘুরলে তিনি উল্লম্ব তলের সাথে 30° কোণে আনত থাকেন ? $[g=9.8 \text{ m s}^{-2}]$ $[\cup{$\mathbb{G}$} : 23.79 \text{ m s}^{-1}] [\cup{\mathbb{G}} : 23.79 \text{ m s}^{-1}]$
- ২৭। কোনো সাইকেল আরোহী 50 m ব্যাসার্ধের বৃত্তাকার পথে 9.8 m s⁻¹ বেগে ঘুরতে গেলে উল্লম্ব তলের সাথে কত কোণে আনত থাকতে হবে ? [উ: 11°] [ব. বো. ২০১৫]
- ২৮। মোটর চলাচলের একটি রাস্তার বাঁকের ব্যাসার্ধ $1~{
 m km}$ । রাস্তাটি অনুভূমিকের সাথে 4° কোণ করে ঢালু করা আছে। একটি মোটর গাড়ি নিরাপদে সর্বোচ্চ কত বেগে এই বাঁক অতিক্রম করতে পারে। $[{
 m \emph{f B}}: 26.18~{
 m m~s}^{-1}]$
- ২৯। 13 m s^{-1} বেগে একটি গাড়িকে নিরাপদে 30 m ব্যাসার্ধের একটি বাঁক অতিক্রম করতে হলে বাঁকটিকে কত কোণে ঢালু করতে হবে ? [উ: 29.89°]
- ৩০। 100 m ব্যাসার্ধবিশিষ্ট একটি বাঁকা পথে 60 km h⁻¹ বেগে গাড়ি চালাতে হলে পথটিকে কত ডিগ্রি কোণে আনত রাখতে হবে ? [উ: 15.8°] [য. বো. ২০০৩]
- ৩১। $100~{\rm m}$ ব্যাসের বৃত্তাকার পথে কোনো মোটর সাইকেল আরোহী কত বেগে ঘুরলে উল্লম্ব তলের সাথে তিনি 30° কোণে আনত থাকবেন ? [উ: $16.82~{\rm m~s^{-1}}$] [কু. বো. ২০০৮; চ. বো. ২০০৬]

সেট II

[সাম্প্রতিক বোর্ড পরীক্ষা ও বিভিন্ন বিশ্ববিদ্যালয়ের ভর্তি পরীক্ষায় সন্নিবেশিত সমস্যাবলি]

- ৩২। সার্কাস পার্টিতে একজন পারফরমার 5 kg ভরের একটি গোলককে ভূমি হতে 1.5 m উপরে অনুভূমিক তলে 2 m লম্বা রশির সাহায্যে বৃত্তাকার পথে ঘোরাচ্ছেন। গোলকটি প্রতি মিনিটে 20 বার আবর্তন করে। ঘূর্ণায়মান অবস্থায় হঠাৎ রশিটি ছিঁড়ে যায়।
 - (ক) আবর্তনশীল গোলকটি কেন্দ্রের দিকে কত বল অনুভব করবে ?
 - (খ) পারফরমার হতে দর্শক সারির দূরত্ব কেমন হলে গোলকটি কোনো দর্শককে আঘাত করবে না ? গাণিতিক বিশ্লেষণের মাধ্যমে ব্যাখ্যা কর।
 - ্ডি: (ক) 43.87 N; (খ) রশিটি ছিঁড়ে গেলে গোলকটি 2.32 m দূরে গিয়ে পড়বে। রশিটির দৈর্ঘ্য 2 m। সুতরাং পারফরমার হতে দর্শকের প্রথম সারির দূরত্ব 2.32 m + 2 m = 4.32 m এর চেয়ে বেশি হলে গোলকটি কোনো দর্শককে আঘাত করবে না।] [চ. বো. ২০১৫]
- ৩৩। নিমে সমতল রাস্তায় দুটি মোটরগাড়ির বেগ বনাম সময় লেখচিত্র দেখানো হলো। গাড়ি দুটির ভর যথাক্রমে 500 kg ও 320 kg। উভয় গাড়ির চাকা ও রাস্তা<mark>র ঘর্ষণজনিত বল 120 N।</mark>

- (ক) ১ম মোটরগাড়ি 50s এ কত দূরত্ব অতিক্রম করে নির্ণয় কর।
- (খ) গাড়ি দুটি ক<mark>র্তৃক প্রযুক্ত বলের তুলনা করে তোমার মতামত দাও।</mark>

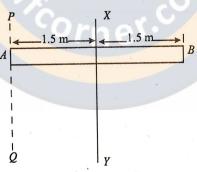
টি: (ক) 30 m; (খ) উভয় গাড়ি কর্তৃক প্র<mark>যুক্ত ব</mark>ল 520 N।] [ঢা. বো. ২০১৬]

- ৩৪। 1 m প্রস্তের একটি রাস্তার বাইরের কিনারা ভেতরের কিনারা হতে উঁচু। 200 m ব্যাসার্ধের বৃত্তাকার মোড় নেওয়ার সময় একজন গাড়ি চালক রাস্তার পাশে সতর্কীকরণ সাইনবোর্ড 60 km h^{-1} লেখা দেখল। এ সময় গাড়িটির বেগ ছিল 50 km h^{-1} ।
 - (ক) ব্যাংকিং কোণ নির্ণয় কর।
 - (খ) উদ্দীপকে উল্লেখিত বেগে গাড়ি চালালে, চালক নিরাপদে মোড় নিতে পারবে কী ? গাণিতিক বিশ্লেষণসহ তোমার উত্তরের সপক্ষে যুক্তি দাও।
 - [উ: (ক) 8.07 C;
 - (খ) উদ্দীপকে উল্লেখিত বেগে গাড়ি চালালে নিরাপদে মোড় নেওয়ার জন্যে ব্যাংকিং কোণ 5.6° হওয়া প্রয়োজন। কিন্তু রাস্তার ব্যাংকিং কোণ 8.07°। সুতরাং উদ্দীপকে উল্লেখিত বেগে গাড়ি চালালে চালক নিরাপদে মোড় নিতে পারবে।]
- ৩৫। রাস্তার কোনো এক বাঁকের ব্যাসার্ধ 50 m এবং রাস্তার উভয় পার্শ্বের উচ্চতার পার্থক্য 0.5 m. রাস্তার প্রস্থ 5 m.
 - (ক) রাস্তার প্রকৃত ব্যাংকিং কোণ কত ?
 - (খ) উদ্দীপকের রাস্তায় 108 km/h বেগে একটি গাড়ি নিরাপদে চালানো সম্ভব কিনা-গাণিতিকভাবে যাচাই কর।
 - টি: 5.7° ; (খ) $108~{
 m km}~{
 m h}^{-1}$ বেগে নিরাপদে গাড়ি চালানোর জন্য রাস্তায় ব্যাংকিং হওয়া প্রয়োজন 61.4° কিন্তু রাস্তার প্রকৃত ব্যাংকিং 5.7° । সূতরাং $108~{
 m km}~{
 m h}^{-1}$ বেগে নিরাপদে গাড়ি চালানো সম্ভব নয়।]

[রা. বো. ২০১৭]

- ৩৬। মিটার গেজ ও ব্রডগেজ রেললাইনের দুট পাতের মধ্যবর্তী দূরত্ব যথাক্রমে 0.8 m ও 1.3 m। যে স্থানে বাঁকের ব্যাসার্ধ 500 m ঐ স্থানে লাইনগুলোর মধ্যে উচ্চতার পার্থক্য যথাক্রমে 7.00 cm ও 11.37 cm।
 - (ক) প্রথম লাইনের ব্যাংকিং কোণ কত ?
 - (খ) কোন লাইনে রেলগাড়ি অধিক দ্রুততার সাথে বাঁক নিতে পারবে—গাণিতিক বিশ্লেষণসহ মন্তব্য কর।
 - উ: (7) 5° ; (1) প্রথম লাইনে বাঁক নেওয়ার সর্বোচ্চ বেগ = $20.74~{\rm m~s^{-1}}$ এবং দ্বিতীয় লাইনে বাঁক নেওয়ার সর্বোচ্চ বেগ = $20.74~{\rm m~s^{-1}}$ অর্থাৎ উভয় লাইনে রেলগাড়ির সর্বোচ্চ সমান বেগে বাঁক নিতে পারবে।

[সি. বো. ২০১৭]


- ৩৭। নয়ন 25 g ভরের একটি পাথর খণ্ডকে 1 m দীর্ঘ একটি সুতার সাহায্যে বৃত্তাকার পথে ঘুরাচ্ছে। পাথর খণ্ডটি প্রতি সেকেন্ডে 5 বার ঘুরছে। পাথরের ঘূর্ণন সংখ্যা একই রেখে সুতার দৈর্ঘ্য দ্বিগুণ করা হলো। সুতা সর্বাধিক 40 N বল সহ্য করতে পারে।
 - প্রথম ক্ষেত্রে পাথরটির কৌণিক ভরবেগ নির্ণয় কর।
 - (খ) নয়ন সুতার দৈর্ঘ্য দ্বিগুণ করে ঘূর্ণন সফলভাবে সম্পন্ন করতে পারবে কিনা—গাণিতিকভাবে যাচাই কর। ভি: (ক) 0.7854 kg m² s⁻¹;
 - (খ) সুতার দৈর্ঘ্য দ্বিগুণ কর<mark>লে সুতার উ</mark>পর 49.348 N টান প্রযুক্ত হবে। <mark>কিন্তু সূ</mark>তা সর্বাধিক 40 N টান সহ্য করতে পারে। সুতরাং সূ<mark>তার দ</mark>ৈর্ঘ্য দ্বিগুণ করে নয়ন সফলভাবে ঘূর্ণন সম্পন্ন করতে পারবে না।

[দি. বো. ২০১৭]

- ৩৮। 8 kg ভরের একটি বস্তুকে 0<mark>.2 m</mark> দীর্ঘ দড়ি দিয়ে একটি নির্দিষ্ট অক্ষের চারদিকে 2 r<mark>ad s^{–1}েবেগে ঘুরান হচ</mark>্ছে।
 - (ক) ঘূর্ণায়মান বস্তুটির কৌণি<mark>ক ভ</mark>রবেগ কত ?
 - (খ) বস্তুটির ভর অর্ধেক হলে <mark>টর্কের</mark> কীরূপ পরিবর্তন হবে ?

[উ: (ক) $0.64~\mathrm{kg}~\mathrm{m}^2\,\mathrm{s}^{-1};$ (খ) বস্তুটির ভর অর্ধেক হলে টর্কও <mark>অর্ধেক</mark> হবে।] [য. বো. ২০১৬]

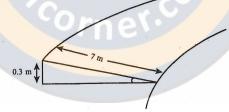
চিত্রে দণ্ডের ভর 3 kg, XY ঘূর্ণন অক্ষ

- (ক) দণ্ডটিকে XY অক্ষের সাপেক্ষে ঘুরালে চক্রগতির ব্যাসার্ধ কত হবে?
- (খ) XY অথবা PQ—কোন অক্ষ সাপেক্ষে দণ্ডটিকে ঘুরানো অধিকতর সহজ হবে, গাণিতিকভাবে ব্যাখ্যা কর।
- [উ : (ক) $0.866~\mathrm{m}$; (খ) XY অক্ষের সাপেক্ষে জড়তার ভ্রামক $I_{XY}=2.25~\mathrm{kg}~\mathrm{m}^2$ এবং PQ অক্ষের সাপেক্ষে জড়তার ভ্রামক $I_{PQ}=9~\mathrm{kg}~\mathrm{m}^2$
- $::I_{XY}{<}I_{PQ}$::XY অক্ষের সাপেক্ষে দণ্ডটি ঘুরানো অধিকতর সহজ হবে।]

[অভিন্ন প্রশ্ন (খ সেট) ২০১৮]

- গাছ থেকে $5.5~{
 m m~s^{-2}}$ ত্ব্রণে একটি ডাব সোজা নিচের দিকে পড়ছে। যদি বাতাসের বাধা $8.6~{
 m N}$ হয় তবে ডাবটির ওজন কত হবে ? উ: 19.6 N বা 2 kg-wt] (ই. বি. ২০১৬–২০১৭)
- 8১। $30~{
 m kg}$ ভরের একটি স্থির বস্তুর বেগ $2~{
 m la}$ নিটে বৃদ্ধি পেয়ে $36~{
 m km}~{
 m h}^{-1}$ -এ উন্নীত করার জন্য বস্তুটির উপর কত বল প্রয়োগ করতে হবে ? [উ: 2.5 N] [ঢা. বি. ২০১৬–২০১৭]
- 8২। 7~kg ভরের কোনো বস্তুর উপর প্রযুক্ত একটি বল $\overrightarrow{F}=(2\hat{i}-3\hat{j}+6\hat{k})~N$ হলে যেখানে \hat{i},\hat{j} এবং \hat{k} একক ভেক্টর। বস্তুটি কত তুরণ প্রাপ্ত হবে ? ্ডি: 1 m s⁻² [বুয়েট ২০১৩–২০১৪]
- ৪৩। ঘণ্টায় 40 মাইল বেগে চলমান একটি গাড়ির চালক 59 গজ দূরে একটি ছোট ছেলেকে দেখতে পেল। সঙ্গে সঙ্গে সে ব্রেক চেপে দিল। ছেলেটির 1 ফুট আগে এসে গাড়িটি থেমে গেল। গাড়িটি থামাতে কত সময় লেগেছে এবং প্রযুক্ত বলের মান কত ? আরোহী সমেত গাড়ির ভর 1 টন। ডি: 6 s; 21556.6 poundal] [क़्रां २००৯-२०১०]

- 88। $30~{
 m kg}$ ভরের একটি শেল $48~{
 m m~s^{-1}}$ বেগে উড়ছে। শেলটি বিস্ফোরিত হয়ে দুই টুকরা হলে, $18~{
 m kg}$ ভরের টুকরাটি স্থির হয়ে যায় এবং বাকি <mark>টুকরাটি উড়ে</mark> যায়। বাকি অংশের বেগ কত ? ডি: 120 m s⁻¹] [বুয়েট ২০০৪–২০০৫]
- ৪৫। মাঠের মধ্য দিয়ে গড়িয়ে <mark>যাওয়া 0.5 kg ভরের একটি ফুটবল 50 m দূরত্বে গিয়ে</mark> থেমে গেল। ফুটবলটির প্রাথমিক বেগ $30~{
 m m~s^{-1}}$ হলে ঘ<mark>র্ষণ ব</mark>লের মান কত hoডি: 6.3 N] [কুয়েট ২০০৫–২০০৬]
- ৪৬। স্থির পানির উপর ভা<mark>সমান</mark> একটি নৌকা হতে একজন লোক অনুভূমিক দিক<mark>ে লাফ</mark> দিয়ে তীরে পৌঁছাল। বাকি লোকসহ নৌকার ভর <mark>300</mark> kg। লাফ দেওয়া লোকের ভর 60 kg। লাফের বে<mark>গ 29</mark> m s⁻¹। এমতাবস্থায় নৌকায় অবস্থিত $9.75~{
 m kg}$ ভ<mark>রের এ</mark>কটি স্থির বলকে কিক মারা হলো। ফলে ফুটবলট<mark>ি একই</mark> দিকে $18~{
 m m~s^{-1}}$ বেগ প্রাপ্ত হলো। পা কর্তৃক প্রযুক্<mark>ত বলের</mark> ঘাত নির্ণয় কর। [উ: 16.5 kg m s⁻¹] [রুয়েট ২০০৫–২০০৬]
- 8৭। 900 kg ভরের একটি <mark>ট্রাক ঘ</mark>ণ্টায় 60 km বেগে চলে। ব্রেক চেপে ট্রাক<mark>টিকে 5</mark>0 m দূরে থামানো হলো। যদি মাটির ঘর্ষণজনিত বল 200 N হয়, তবে ব্রেকজনিত বলের মান নির্ণয় কর। ডি: 12300 N 1 [কুয়েট ২০১০–২০১১]
- 8৮। $20~{
 m m~s^{-1}}$ বেগে আগত $0.2~{
 m kg}$ ভ<mark>রের ক্রিকেট বলকে একজন খেলো</mark>য়াড় ক্যাচ ধরে $0.1~{
 m s}$ সময়ের মধ্যে থামিয়ে দিল। খেলোয়াড় কর্তৃক প্রযুক্ত গড় বল কত ? [উ: 40 N] [বুয়েট ২০০৪–২০০৫]
- $150~{
 m g}$ ভরের একটি ক্রিকেট বল $12~{
 m m~s^{-1}}$ বেগে ফিরে আসে। আঘাত বলের ক্রিয়াকাল $0.01{
 m s}$ হলে, ব্যাট কর্তৃক বলের উপর প্রযুক্ত গড় বল নির্ণয় কর। [উ: 180 N] [বুয়েট ১৯৯৫–১৯৯৬]
- ৫০। $25~{
 m g}$ ভরের একটি বুলেট $100~{
 m cm}~{
 m s}^{-1}$ বেগে $15~{
 m cm}$ পুরু একটি কাঠের দেয়ালে প্রবেশ করে ও দেয়াল ভেদ করে $75~cm~s^{-1}$ বেগে বেরিয়ে যায়। বুলেটের গড় বল কত ? ডি: 0.03645 N]

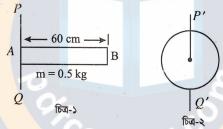

[क़्स्रिं २००४–२००৯, २००१–२००४]

- ৫১। $25~{
 m g}$ ভরের একটি বুলেট $6 imes 10^2~{
 m m~s^{-1}}$ গতিবেগে একটি কাঠের গুড়ির মধ্যে প্রবেশ করে। কাঠের গুড়ির মধ্যে 15 cm প্রবেশ করার পর বুলেটটি থেমে যায়। বুলেটের গড় বল কত ? [উ: 30,000 N] [রুয়েট ২০০৭–২০০৮]
- ৫২। মহাকাশে অবস্থিত একটি শ্যাটল মহাকাশ যানের ভর $3 imes 10^3~{
 m kg}$ এবং জ্বালানির ভর $50{,}000~{
 m g}$ । জ্বালানি $15~{
 m kg}~{
 m s}^{-1}$ হারে ব্যবহৃত হলে এবং $150~{
 m m}~{
 m s}^{-1}$ সুষম দ্রুতিতে নির্গত হলে শাটল যানের উপর ধাক্কা নির্ণয় কর। ্ডি: 2250 N] [বুয়েট ২০০৮–২০০৯]

- ৫৩। $10{,}000~{
 m kg}$ জ্বালানিসহ একটি রকেটের ভর $15000~{
 m kg}$ । জ্বালানি যদি $200~{
 m kg}~{
 m s}^{-1}$ হারে পুড়ে রকেটের সাপেক্ষে $2000~{
 m m}~{
 m s}^{-1}$ বেগে নির্গত হয়, তাহলে রকেটের উপর ধাকা বা থ্রাস্ট কত ? $[\mbox{উ}: 4 \times 10^5~{
 m N}]$ $[\mbox{DI}: 4 \times 10^5~{
 m N}]$
- ৫৪। 100 kg ভরের একজন লোক লিফটে দাঁড়িয়ে আছে। লিফটটি যদি 2 m s⁻² ত্বরণে উপরের দিকে উঠতে থাকে তাহলে লোকটির উপর উর্ধ্বমুখী প্রতিক্রিয়া বল কত ? [উ: 1180 N] [রুয়েট ২০০৬–২০০৭]
- ৫৫। একটি 70 kg ভরের বস্তু একটি লিফটের উপর স্থির অবস্থায় আছে। লিফটের উর্ধ্বমুখী ত্রণ 2 m s^{-2} হলে বস্তুর উপর মেঝে কর্তৃক প্রযুক্ত বল কত ? [উ: 82.6 N] [রা. বি. ২০১৫–২০১৬]
- ৫৬। 2 m s⁻² ত্বরণে উপরে উঠন্ত একটি লিফটে একটি লোক দাঁড়ানোর ফলে উর্ধ্বমুখী বল 1180 N হলে লোকটির ভর কত হবে ? [উ: 100 kg] [জা. বি. ২০১৫–২০১৬]
- ৫৭। 1000 kg ভরের উড়োজাহাজ স্থির বেগে খাড়া উপরের দিকে উড্ডয়ন করছে। বাতাসের ঘর্ষণ 1800 N হলে উড়োজাহাজের ওপর নিট বল কত হবে ?
- ৫৮। 4 kg ভরের একটি বন্দুক হতে 0.005 kg ভরের একটি গুলি 200 m s⁻¹ বেগে বের হলে বন্দুকের পশ্চাৎ বেগ কত ? [উ: 0.25 m s ⁻¹] [য. বি. প্র. বি. ২০১৫–২০১৬]
- ৫৯। 6 kg ভরের একটি বন্দুক হতে 0.01 kg ভরের একটি গুলি 300 m s⁻¹বেগে বের হয়ে গেল। বন্দুকের পশ্চাৎবেগ কত ? [উ: 0.5 m s ⁻¹] [জা. বি. ২০১৬–২০১৭]
- ৬০। একটি 8 kg ভরের চাকার চক্র<mark>গতির</mark> ব্যাসার্ধ 25 cm হলে এর জড়তার ভ্রামক কত <mark>হবে ?</mark> চাকাটিতে 3 rad s⁻¹ কৌণিক ত্রণ সৃষ্টি করতে হলে <mark>কত</mark> মানের টর্ক প্রয়োগ করতে হবে ? [উ: 0.5 kg m²; 1.5 N m]
- ৬১। একটি চাকার ভর 5 kg এবং কোনো অক্ষের সাপেক্ষে চক্রগতির ব্যাসার্ধ 0.25। এর জড়<mark>তার ভ্রামক</mark> কত ?
 [উ: 0.2 kg m²] জা. বি. ২০১৬–২০১৭]
- ৬২। একটি চাকতির ভরকেন্দ্রগামী <mark>লম্ব অক্ষে</mark>র সাপেক্ষে এর ঘূর্ণন জড়তা 1.5 kg m² এবং ভর 4 kg হলে ব্যাসার্ধ কত ? [উ: 0.866 m] [বঙ্গবন্ধু বি. প্র. বি. ২০১৬–২০১৭]
- ৬৩। একটি গোলককে 2 m দীর্ঘ একটি সু<mark>তার একপ্রান্তে</mark> বেঁধে প্রতি সেকেন্ডে 5 বার ঘুরানো হয়। গোলকটির কৌণিক ভরবেগ কত ? কেন্দ্রমুখী বল কত ? m=0.05 kg। [$\overline{\mathbf{w}}$: $6.28 \text{ kg} \text{ m}^2 \text{ s}^{-1}$; 98.696 N]
- ৬৪। 50 g ভরবিশিষ্ট একটি বস্তুকে 3 m দীর্ঘ সুতার সাহায্যে বৃত্তাকার পথে ঘুরানো হচ্ছে। বস্তুটি 5 সেকেন্ডে 20 টি পূর্ণ আবর্তন করলে সুতার টান কত ? [উ: 94.75 N] [কুয়েট ২০১৬–২০১৭]
- ৬৫। 5 kg ভর ও 0.25 m ব্যাসার্ধবিশিষ্ট একটি বেলুন 50 rad s⁻¹ কৌণিক বেগে গড়াতে থাকলে তার গতিশক্তি কত ? [উ:585.9 J] [চুয়েট ২০১৫–২০১৬]
- ৬৬। কোনো সাইকেল আরোহীকে 100 m ব্যাসার্ধের বৃত্তাকার পথে কত বেগে ঘুরতে হবে, যাতে সে উল্লম্ব তলের সাথে 30° কোণে আনত থাকে ? [উ: 23.787 m s⁻¹] [রুয়েট ২০১০–২০১১]
- ৬৭। একটি ইলেকট্রন পরমাণু নিউক্লিয়াসের চতুর্দিকে $1.1 {
 m \AA}$ ব্যাসার্ধ একটি বৃত্তাকার পথে $4 imes 10^6 {
 m m s}^{-1}$ বেগে প্রদক্ষিণ করে। ইলেকট্রনের কেন্দ্রমুখী বলের মান কত ? [উ : $1.32 imes 10^{-7} {
 m N}$] [কুয়েট ২০১৬–২০১৭]
- ৬৮। R ব্যাসার্ধবিশিষ্ট বৃত্তাকার পথে একটি কণা 4 বার পূর্ণ ঘূর্ণন সম্পন্ন করল। কণাটির সরণ ও অতিক্রান্ত দূরত্ব কত ? $[rak{v}:0;8\pi R]$ [বঙ্গবন্ধু বি. প্র. বি. ২০১৬–২০১৭]
- ৬৯। 6.0 kg ভরের একটি বস্তুকে 3.0 m দীর্ঘ একটি সুতার প্রান্তে বেঁধে 2.0 m s⁻¹ বেগে ঘুরানো হচ্ছে। সুতার টান কত নিউটন (N) হবে ? [উ:8 N] [শা.বি.প্র.বি. ২০১৫–২০১৬]

- ৭০। একটি রাস্তা 100 m ব্যাসার্ধে বাঁক নিয়েছে। ঐ স্থানে রাস্তা চওড়া 5 m এবং ভিতরের কিনারা হতে বাইরের কিনারা 50 cm উঁচু। সর্বোচ্চ কত বেগে ঐ স্থানে নিরাপদে বাঁক নেয়া যাবে ? [উ: 9 m s^{-1}] [রুয়েট ২০১৫–২০১৬]
- ৭১। একটি রাস্তা 60 m ব্যাসার্ধে বাঁক নিচ্ছে। ঐ স্থানে রাস্তাটি 6 m চওড়া এবং ভিতরের কিনারা হতে বাইরের কিনারা 0.06 m উঁচু। সর্বোচ্চ কত বেগে ঐ স্থানে নিরাপদে বাঁক নেওয়া সম্ভব ? [উ: 7.66 m s⁻¹] [চুয়েট ২০০৮–'০৯]
- ৭২। একটি গ্রামোফোন রেকর্ড চক্রাকারে প্রতি মিনিটে 78 বার স্থির গতিতে ঘুরে। সুইচ বন্ধ করার 30 s পর রেকর্ডটি থেমে যায়। রেকর্ডটি স্থিরাবস্থায় আসার আগে কতবার ঘুরেছিল? [উ: 19.5 বার] [সি. কৃ. বি. ২০১৭–২০১৮]
- ৭৩। একটি রেললাইনের বাঁকের ব্যাসার্ধ 450 m এবং রেললাইনের পাতদ্বয়ের মধ্যবর্তী দূরত্ব 1 m। ঘণ্টায় 75.6 km বেগে চলন্ত গাড়ির ক্ষেত্রে প্রয়োজনীয় ব্যাংকিং এর জন্য বাইরের লাইনের পাতকে ভিতরের লাইনের পাত অপেক্ষা কতটুকু উঁচু করতে হবে ?
- 98। 25.2 km h^{-1} বেগে চলা একজন সাইকেল আরোহী 5 m ব্যাসার্ধের একটি বৃত্তাকার মোড় ঘুরছিল। কোনো দুর্ঘটনা এড়াতে ভূমির সাথে কতটা হেলে তাকে চলতে হবে ? [উ: 45°] [রুয়েট ২০০৪–২০০৫]
- ৭৫। একটি রেল লাইনের বাঁকের ব্যাসার্ধ 250 m এবং রেল লাইনের পাতদ্বয়ের মধ্যবর্তী দূরত্ব 1m। ঘণ্টায় 50 km বেগে চলন্ত গাড়ির ক্ষেত্রে প্রয়োজনীয় ব্যাংকিং এর জন্য বাইরের লাইনের পাতকে ভিতরের লাইনের পাত অপেক্ষা কতটুকু উঁচু করতে হবে ?
- ৭৬। 4 g ভরের একটি বস্তু 6 m উঁচু স্থান হতে পতিত হয়ে কাদায় 5 cm প্রবে<mark>শ করে</mark> স্থির হয়ে গেল। বস্তুর উপর কাদার গড় ধাক্কার পরিমাণ নির্ণয় কর। [উ : 4.7432 N] [বুয়েট ২০১১–২০১২]
- ৭৭। 4, 5 এবং 6 একক ভরের তিনটি কণার স্থানান্ধ যথাক্রমে (4, 0, -1), (3, -2, 3) এবং (2, 1, 4) হলে Z অক্ষের সাপেক্ষে তাদের জড়তার ভ্রামক ও চক্রগতির ব্যাসার্ধ নির্ণয় কর।

 [উ: 159 একক; 3.26 একক]
 [বুয়েট ২০১৪–২০১৫]
- ৭৮। 1000 kg ভরের এক<mark>টি বাস</mark> 78125 J গতিশক্তি নিয়ে রাস্তায় চলার সময় হঠা<mark>ৎ 14</mark>5 m ব্যাসার্ধবিশিষ্ট একটি বাঁকের সমুখীন হলো, যা নিচে<mark>র চিত্রে</mark> দেখানো হয়েছে। কু. বো. ২০১৯]


- (ক) বাসটির ভরবেগ নির্ণয় কর।
- (খ) বাসটি গতিবেগ না কমিয়ে উদ্দীপকে প্রদর্শিত রাস্তার বাঁকটি নিরাপদে অতিক্রম করতে পারবে কি ? গাণিতিক বিশ্লেষণসহ মতামত দাও।
- টি: (ক) $12500~{
 m kg}~{
 m m}~{
 m s}^{-1}$; (খ) নিরাপদে বাঁক অতিক্রম করার জন্য বেগ হওয়া প্রয়োজন $7.8~{
 m m}~{
 m s}^{-1}$; কিন্তু বাসের বেগ $12.5~{
 m m}~{
 m s}^{-1}$ । সুতরাং বাসটি নিরাপদে বাঁক নিতে পারবে না।] [কু. বো. ২০১৯]
- ৭৯। 5~kg ও 7~kg ভরের দুটি বস্তু যথাক্রমে $5~m~s^{-1}$ এবং $6~m~s^{-1}$ বেগে পরস্পর বিপরীত দিক হতে এসে সংঘর্ষের পর বস্তুদ্বয় একত্রে মিলিত হয়ে নির্দিষ্ট দিকে চলতে শুরু করে।
 - (ক) উদ্দীপকের বস্তুদ্বয়ের চূড়ান্ত বেগ নির্ণয় কর।
 - (খ) উদ্দীপকের বস্তুদ্বয়ের সংঘর্ষ স্থিতিস্থাপক না অস্থিতিস্থাপক—গাণিতিক বিশ্লেষণসহ মতামত দাও।
 - [উ: (ক) 1.42 m s⁻¹, 7 kg ভরের বস্তুর বেগের দিকে;

- (খ) সংঘর্ষের পূর্বে মোট গতিশক্তি $E_1=188.5$ এবং সংঘর্ষের পরে মোট গতিশক্তি $E_2=12.098~\mathrm{J}$ । যেহেতু $E_1 \neq E_2$ \therefore সংঘর্ষটি অস্থিতিস্থাপক।]
- ৮০। 1m এবং 0.707m দৈর্ঘ্যের দুটি সরু সুষম দণ্ডের ভরদ্বয় যথাক্রমে 10 kg এবং 20 kg, এদের উভয়ই দৈর্ঘ্যের সাথে লম্বভাবে স্থাপিত এবং মধ্যবিন্দুগামী অক্ষের সাপেক্ষে প্রতি মিনিটে যথাক্রমে 300 বার এবং 360 বার একটি মোটরের সাহায্যে সম-কৌণিক বেগে ঘুরছে। মোটরিট বন্ধ হয়ে গেলে ১ম দণ্ডটি 20 s সময়ের মধ্যে থেমে যায়।
 - (ক) মোটরটি বন্ধ হয়ে যাবার পর ১ম দণ্ডটি কতটি পূর্ণ ঘূর্ণন সম্পন্ন করবে ?
 - (খ) ঘূর্ণনরত দণ্ডদ্বয়ের কৌণিক গতিশক্তির গাণিতিক তুলনা কর ।

উ : (ক) 50 বার ; (খ) E₁ ঃ E₂ 1 ঃ 1.44

[য়. বো. ২০১৯]

- ৮১। রহিম 80 cm দৈর্ঘ্যের একখণ্ড সুতার এক প্রান্তে 200 g ভরের একটি বস্তু বেঁধে বৃত্তাকার পথে প্রতি মিনিটে 90 বার ঘুরাচ্ছে। অপর দিকে করিম 60 cm দৈর্ঘ্যের অপর একখণ্ড সুতার এক প্রান্তের 150 g ভরের একটি বস্তু বেঁধে একইভাবে প্রতি মিনিটে 120 বার ঘুরাচ্ছে।
 - (ক) রহিমের দ্বারা ঘুরানো বস্তুটির কৌণিক ভরবেগ নির্ণয় কর।
 - (খ) উদ্দীপকের ঘটনায় রহিম ও করিম সুতায় সমান টান পেয়েছিল কি ? গাণিতিকভাবে বিশ্লেষণ কর।
- ৮২। একটি সুষম দণ্ডের (চিত্র-১) সা<mark>হান্যে একটি সুষম চাকতি (চিত্র-২) তৈরি করা হলো:</mark>

- (ক) চিত্র-১ এর PQ এর সাপেক্ষে <mark>জড়তার ভ্রা</mark>মক বের কর।
- (খ) চাকতির পরিধি দণ্ডের দৈর্ঘ্যের <mark>সমান হলে উভয়ের জড়তার ভ্রামক ভিন্ন হবে</mark> কি না গাণিতিক বিশ্লেষণসহ মতামত দাও।
- [উ: (ক) 0.06 k m²; (খ) চাকতির জড়তার ভ্রামক 2.28 × 10⁻³ kg m² অর্থাৎ উভয়ের জড়তার ভ্রামক এক হবে না।] [দি. বো. ২০১৯]