

কাজ, শক্তি ও ক্ষমতা WORK, ENERGY AND POWER

আমাদের প্রাত্যহিক জীবনে আমরা কাজ, ক্ষমতা ও শক্তি কথা তিনটি প্রায়শই ব্যবহার করে থাকি। কোনো কিছু করাকে আমরা কাজ বলি। কোনো শিক্ষার্থী বই পড়ছে আমরা বলি সে কাজ করছে। নওশিন একটি ভারী ব্যাগকে টেনে উপরে ওঠাচ্ছে তাকেও আমরা কাজ বলি। পদার্থবিজ্ঞানে কোনো কিছু করাকে কাজ বলে না। পদার্থবিজ্ঞানে কাজ বল ও সরণের সাথে সম্পর্কযুক্ত। আমাদের জীবনে অত্যন্ত শুরুত্বপূর্ণ বিষয় হচ্ছে শক্তি। শক্তি ছাড়া কোনো কাজ হয় না। যে যতো দ্রুত কাজ করতে পারে তার ক্ষমতা ততো বেশি। এ অধ্যায়ে আমরা কাজ, শক্তি ও ক্ষমতার বিভিন্ন দিক নিয়ে আলোচনা করবো। প্রধান শব্দসমূহ :

কাজ, ধ্রুব বল দ্বারা কৃতকাজ, জুল, বলের দ্বারা কাজ, বলের বিরুদ্ধে কাজ, পরিবর্তনশীল বল দ্বারা কৃত কাজ, শক্তি, যান্ত্রিকশক্তি, গতিশক্তি, বিভব শক্তি, সংরক্ষণশীল বল, অসংরক্ষণশীল বল, শক্তির নিত্যতার নীতি, কর্মদক্ষতা।

এ অধ্যায় পাঠ শেষে শিক্ষার্থীরা....

ক্রমিক	শিখন ফল	অনুচ্ছেদ
নং		-120 -11
2	কাজ ও শক্তির সার্বজনীন ধারণা ব্যাখ্যা ক <mark>রতে পারবে</mark> ।	۵.۵
2	বল ও সরণের সাথে কাজের ভেক্টর সম্পর্ক বিশ্লেষণ করতে পারবে।	¢.2, ¢.0
٢	স্থির বল এবং পরিবর্তনশীল বল দ্বারা সম্পাদিত কাজ বিশ্লেষণ করতে পারবে।	¢.৩,¢.8
8	স্থিতিস্থাপক বল ও অভিকর্ষ বলের বিপরীতে সম্পাদিত কাজের তুলনা করতে পারবে।	¢.¢, ¢.৬, ¢.9
¢	গতিশক্তির গাণিতিক রাশিমালা প্রতিপাদন ও সমস্যা সমাধানে এর ব্যবহার করতে পারবে।	6.30
৬	স্থিতিশক্তির গাণিতিক রাশিমালা প্রতিপাদন ও সমস্যা সমাধানে এর ব্যবহার করতে পারবে।	6.22
٩	ব্যবহারিক	6.25
	 একটি ম্প্রিং-এর বিভব শক্তি পরিমাপ করতে পারবে। 	
Ъ	শক্তির নিত্যতার নীতি ব্যবহার করে বিভিন্ন সমস্যার সমাধান করতে পারবে।	¢.38, ¢.3¢
৯	ক্ষমতা, বল ও বেগের মধ্যে সম্পর্ক বিশ্লেষণ করতে পারবে।	6.26
20	সংরক্ষণশীল ও অসংরক্ষণশীল বল ব্যাখ্যা করতে পারবে।	৫.১৩
22	কোনো সিস্টেমের ক্ষেত্রে কর্মদক্ষতা হিসাব করতে পারবে।	6.29

৫.১। কাজ ও শক্তির সার্বজনীন ধারণা

Universal Concepts of Work and Energy

আমরা আমাদের দৈনন্দিন জীবনে কোনো কিছু করাকে কাজ বললেও পদার্থবিজ্ঞানে কিন্তু আমরা তা বলি না। পদার্থবিজ্ঞানে কাজ বলতে বল প্রয়োগের ফলে সরণ সংক্রান্ত বিশেষ অবস্থাকে বোঝায়। কোনো বস্তুর উপর কোনো বল ক্রিয়া করে যদি সরণ ঘটায় তাহলেই কেবল কাজ হয়। একজন পাহারাদার বসে বসে বাড়ি পাহারা দিচ্ছেন। তিনি বলবেন তিনি কাজ করছেন। কোনো স্রোতের নদী বা খালে কোনো নৌকা ভেসে যাচ্ছিল মামুন সাহেব সেটাকে টেনে ধরে রাখছেন। তিনি বলবেন তিনি কাজ করে নৌকাকে ঠেকিয়ে রেখেছেন, নতুবা সেটি স্রোতের টানে ভেসে যেত। দৈনন্দিন জীবনে এগুলোকে কাজের স্বীকৃতি দিলেও পদার্থবিজ্ঞানে কিন্তু এগুলো কাজ হয়নি। বরং পাহারাদার যদি হেঁটে হেঁটে পাহারা দিতেন বা নৌকা স্রোতের টানে ভেসে যেত তাহলে কিছু কাজ হতো। আমরা আমাদের প্রাত্যহিক জীবনে অনেক কাজের ঘটনা দেখতে পাই, যা পদার্থবিজ্ঞানের দৃষ্টিতেও কাজ। যেমন মাঠে বলদ লাঙ্গল টানছে, একজন রিক্সাচালক রিক্সা চালাচ্ছেন, ক্রিকেটার বলকে সজোরে মেরে রান নিচ্ছেন ইত্যাদি।

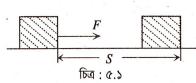
নি	জে কর :	10.1014
(ব	i) এক প্যাকেট বই হাত দিয়ে ধরে কিছুক্ষ <mark>ণ দাঁড়িয়ে থাকো</mark> ।	lating (* 17 Ali 1976 - Ali 19 Ali 1986 - Ali
(খ) এই বইখানাকে ঠেলে টেবিলের এ <mark>ক প্রান্ত থে</mark> কে অন্য প্রান্তে নিয়ে যাও।	
) বই ভর্তি তোমার কলেজ ব্যাগক <mark>ে সিঁড়ি</mark> দিয়ে নিচতলা থেকে দোতলা বা তিন ত <mark>লায় ওঠা</mark> ও।	
(ঘ) তোমার কক্ষের দেয়ালকে কি <mark>ছুক্ষণ</mark> জোরে ঠেলে ধরে রাখো।	

(খ) এবং (গ) এর ক্ষেত্রে তুমি নিঃসন্দেহে কাজ করছো, কেননা তুমি বল প্রয়োগ <mark>করে ব</mark>ই এবং ব্যাগের সরণ ঘটিয়েছো। আমরা কোনো বস্তুকে উপরে ওঠাতে বা নিচে নামাতে বা এক স্থান থেকে অন্য স্থানে নিতে বল প্রয়োগ করে সরণ ঘটাতে পারি। আমরা বল প্রয়োগ করে কোনো বস্তুর আকার পরিবর্তন করতে পারি। এসব ক্ষেত্রে <mark>কাজ</mark> হয়।

কিন্থু (ক) ও (ঘ) এর ক্ষেত্রে কোনো সরণ হয়নি, কাজেই পদার্থবিজ্ঞানের ভাষায় তুমি কোনো কাজ করোনি, কিন্তু শারীরতাত্ত্বিক দিক (Physiological Sense) দিয়ে তুমি কঠোর পরিশ্রম করেছো, কেননা প্যাকেটটি ধরে রাখতে বা দেয়ালটি ঠেলতে তুমি ক্লান্ত হয়ে পড়ছো।

আর আমরা কখন ক্লান্ত হই ? যখন আমরা শক্তি ব্যয় করি তথা কাজ করি। উপরিউক্ত ক্ষেত্রগুলোতে আমরা যদি তোমাকে অনেকগুলো কণার সমন্বয়ে একটি ব্যবস্থা বলে বিবেচনা করি, তাহলে আমরা দেখতে পাই যে, অবশ্যই সূক্ষাতিসূক্ষ (Microscopic) কাজ হচ্ছে। তোমার শরীরের পেশিগুলো কোনো দৃঢ় অবলম্বন নয় এবং কোনো পেশিই কোনো ভারকে স্থিতিশীল অবস্থায় ধরে রাখতেও পারে না। এক্ষেত্রে প্রতিটি আলাদা আলাদা পেশি তন্তু বারংবার বিরাম নিচ্ছে এবং সঙ্কুচিত হচ্ছে। এতাবে বিবেচনা করলে প্রতিটি সংকোচনেই কাজ হচ্ছে। এ কারণে ভারী বস্তুকে ধরে রাখতে তুমি ক্লান্ত হয়ে পড়ো। এ অধ্যায়ে আমরা এ "অভ্যন্তরীণ কাজ" বিবেচনায় আনছিনা। এখানে কেবল বস্তুর চাক্ষুষ সরণ ঘটলেই কাজ বলে বিবেচিত হয়, বল প্রয়োগে বস্তুটির সরণ না ঘটলে কৃত কাজ শূন্য হবে।

অন্যদিকে দৈনন্দিন জীবনে আমরা শক্তি ও বলকেও অনেক সময় গুলিয়ে ফেলি। হয়তো একটা ভারী বস্তুকে ঠেললে কেউ বেশি বল প্রয়োগ করছেন, আমরা বলে ফেলি লোকটি খুব শক্তি প্রয়োগ করছেন। আবার অনেক সময় কোনো কিছু বলার সময়ও আমরা শক্তি শব্দ ব্যবহার করি, যেমন ভদ্রলোক খুব শক্তি দিয়ে কথাটা নোঝাচ্ছেন। আসলে পদার্থবিজ্ঞানে কাজের মতো শক্তিরও বিশেষ অর্থ আছে, আর সেটা হচ্ছে কাজ করার সামর্থ্য। অনেক সময় আমরা বলি আমার আজ বেশ চাঙ্গা লাগছে, গায়ে শক্তি বেশি মনে হচ্ছে। এর অর্থ আমার অনেক কাজ করার সামর্থ্য হয়েছে। আসলে কাজ করার সামর্থ্যকেই শক্তি বলে। শক্তি নানারূপে থাকতে পারে যেমন যান্ত্রিক শক্তি, তাপ শক্তি, রাসায়নিক শক্তি, তড়িৎ শক্তি ইত্যাদি। শক্তিকে এক রূপ থেকে অন্য রূপোন্তর করা যায়।


পদার্থ-১ম (হাসান) -২১(ক)

৫.২। কাজ

Work

সংজ্ঞা : একটি বস্তুর উপর কোনো বল ক্রিয়া করায় যদি বলের অভিমুখে বস্তুটির কিছু সরণ ঘটে তাহলে ক্রিয়াশীল বল কাজ করেছে বলে ধরা হয়। বল ও বলের দিকে সরণের উপাংশের গুণফলকে কাজ বলে।

ধরা যাক, কোনো বস্তুর উপর একটি ধ্রুব বল F এর ক্রিয়ায় বস্তুটির বলের অভিমুখে সরলরেখা বরাবর সরণ হয় S (চিত্র ৫.১)। তাহলে বস্তুটির উপর বল দ্বারা কৃতকাজ W হবে,

W = FS

... (5.1)

এখন সরণ S এর সময় যদি বল F স্থির থাকে, অর্থাৎ বল ধ্রুব হয়, তাহলে (5.1) সমীকরণে আমরা F বসিয়ে সহজেই কাজ হিসাব করতে পারি। কিন্তু যদি বল F ধ্রুব না হয়ে পরিবর্তিত হতে থাকে, তাহলে উক্ত সমীকরণে কোন F বসাবো ? সেই ক্ষেত্রে উপরিউক্ত সমীকরণ প্রযোজ্য হবে না। প্রতিটি মুহূর্তে F এর নতুন নতুন মান নিয়ে অসংখ্যবার কাজ হিসাব করে যোগ করে, অন্য কথায় যোগজীকরণ করে কাজ হিসাব করতে হবে। আমরা পরবর্তী অনুচ্ছেদসমূহে ধ্রুব বল দ্বারা সম্পাদিত কাজ ও পরিবর্তনশীল বল দ্বারা কৃতকাজ কীভাবে হিসাব করা হয় তা ব্যাখ্যা করবো।

৫.৩। ধ্রুব বল দ্বারা <mark>সম্পা</mark>দিত বা কৃত কাজ

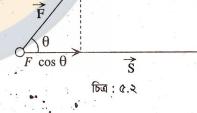
Work Done by a Constant Force

আমরা আগের অনুচ্ছেদে দেখেছি F বলের ক্রিয়ায় যদি কোনো কণার বলের অভিমুখে সরলরেখা বরাবর সরণ S হয়, তাহলে কণাটির উপর বলের দ্বারা কৃত কাজ হবে,

W = FS

এখন যদি বল F ধ্রু<mark>ব হয় এ</mark>বং বলের অভিমুখে কণাটির সরণ S হয়, তাহলে নিঃসন্দেহে (5.1) সমীকরণ থেকে কৃত কাজ পাওয়া যাবে।

W = FS


ধ্রুব বল $\overrightarrow{\mathbf{F}}$ যদি কণাটির সরণ $\overrightarrow{\mathbf{S}}$ এর সাথে θ কোণ উৎপন্ন করে (চিত্র $\epsilon \cdot 2$), তাহলে এ সরণ কালে কৃতকাজ W হবে ।

W = সরণের দিকে বলের উপাংশ × সরণ

$$= (F \cos \theta) S$$

at,
$$W = F(S \cos \theta)$$

= বল × বলের দিকে সরণের উপাংশ

 $\therefore W = FS \cos \theta$

(5.3)

বল ও সরণ উভয়ই ভেক্টর রাশি হওয়ায় ভেক্টর রাশির ক্বেলার গুণনের সংজ্ঞানুসারে আমরা (5.2) সমীকরণকে লিখতে পারি,

$$W = \vec{F} \cdot \vec{S}$$

কোনো একটি বস্তুর ওপর বল প্রয়োগ করলে যদি বস্তুটির সরণ বলের অভিমুখে না হয়, তাহলে গতিশীল বস্তুর উপর ঐ বিশেষ বলের সাথে অন্যান্য বলও ক্রিয়া করে থাকে যেমন বস্তুর ওজন, তল কর্তৃক প্রদন্ত ঘর্ষণ বল ইত্যাদি। কোনো বস্তুর উপর কেবল একটি মাত্র বল ক্রিয়া করলে ঐ বলের অভিমুখ ছাড়াও বস্তুটির সরণ হতে পারে। যেমন, আমরা যখন কোনো বস্তুকে তির্যকডাবে বাতাসে নিক্ষেপ করে থাকি- এক্ষেত্রে বস্তুর উপর কেবল অভিকর্ষ বল খাড়া নিচের দিকে ক্রিয়া করে, কিন্তু বস্তুটির অনুভূমিক বরাবর সরণ হয়ে থাকে। কোনো বস্তু সরলরেখা বরাবর চলতে পারে না, যদি না ঐ একটিমাত্র বলের দিক ঐ সরলরেখা বরাবর হয়।

পদার্থ-১ম (হাসান) -২১(খ)

রাশি : যেহেতু দুটি ভেক্টর রাশির স্কেলার গুণফল সর্বদা একটি স্কেলার রাশি। সুতরাং বল ও সরণের স্কেলার গুণফল কাজ একটি স্কেলার রাশি। এর কেবল মান আছে, দিক নেই।

মাত্রা : (5.2) সমীকরণ থেকে দেখা যায়, $\cos heta$ এর কোনো মাত্রা নেই। সুতরাং কাজের মাত্রা হবে বল × সরণ-এর মাত্রা।

 $[W] = ML^2T^{-2}$

একক : কাজের একক = বল \times সরণ-এর একক। কাজের একক জুল (J)। যদি বল F = 1 N, সরণ S = 1 m এবং $\theta = 0^\circ$ হয়, তাহলে W = 1 J হবে।

কোনো বস্তুর উপর এক নিউটন (N) বল প্রয়োগের ফলে যদি বলের দিকে বলের প্রয়োগ বিন্দুর এক মিটার (m) সরণ হয় তবে সম্পন্ন কাজের পরিমাণকে এক জুল (J) বলে।

$\therefore 1 J = 1 N m$

কাজ ও শক্তির কয়েকটি অপ্রচলিত একক

সারা বিশ্বব্যাপী পরিমাপের এসআই পদ্ধতি <mark>প্রচলন হও</mark>য়ায় এখন কাজ পরিমাপ করা হয় কেবলমাত্র জুল (J) এককে। এসআই পদ্ধতি প্রচলনের পূর্বে কাজের বেশ <mark>কয়েক</mark>টি একক প্রচলিত ছিল। যেগুলো এখন আর ব্যবহৃত হয় না। সেই অপ্রচলিত এককগুলো হচ্ছে, ১. আর্গ, ২. <mark>ফুট পা</mark>উন্ডাল, ৩. গ্রাম-সেন্টিমিটার, ৪. ফুট-পা<mark>উন্ড এ</mark>বং ৫. কিলোগ্রাম-মিটার। বর্তমানে প্রচলিত জুল একককে তখন MKS পদ্ধতিতে পরম একক বলা হতো।

১. আর্গ : সিজিএস পদ্ধতিতে কাজের পরম একক হচ্ছে আর্গ। কোনো বস্তুর উপর এক ডাইন বল প্রয়োগের ফলে যদি বলের দিকে বলের প্রয়োগ বিন্দুর এক সেন্টিমিটার সরণ হয় তাহলে সম্পন্ন কাজের পরিমাণকে এক আর্গ (1 erg.) বলে। 1 erg = 1 dyne × 1 cm। জুলের সাথে আর্গের সম্পর্ক হচ্ছে 1 J = 10⁷ erg।

২. ফুট-পাউন্ডাল : এফপিএস <mark>পদ্ধতি</mark>তে কাজের পরম একক হচ্ছে ফুট পাউন্ডাল। কোনো বস্তুর উপর এক পাউন্ডাল বল প্রয়োগের ফলে যদি বলের দিকে বলের প্রয়োগ বিন্দুর সরণ হয় এক ফুট তবে সম্পন্ন কাজের পরিমাণকে বলা হয় এক ফুট পাউন্ডাল (1ft-poundal)। 1ft-poundal = 1poundal × 1ft = 4.2 × 10⁵ erg।

৩. গ্রাম-সেন্টিমিটার : সিজিএস পদ্ধতিতে কাজের অভিকর্ষীয় একক হচ্ছে গ্রাম-সেন্টিমিটার। 1gm ভরের কোনো বস্তুকে অভিকর্ষের বিরুদ্ধে খাড়া 1cm উঠালে সম্পন্ন কাজের পরিমাণকে এক গ্রাম-সেন্টিমিটার (1 gm-cm) বলে। 1 gm-cm = 1 gm-wt × 1 cm = 980 dyne × 1 cm = 980 erg

8. ফুট-পাউন্ত : এফপিএস পদ্ধতিতে কাজের অভিকর্ষীয় একক হচ্ছে ফুট-পাউন্ড। 11b ভরের কোনো বস্তুকে অভিকর্ষের বিরুদ্ধে খাড়া 1ft উঠালে সম্পন্ন কাজের পরিমাণকে এক ফুট পাউন্ড (1ft-lb) বলে।

1ft-lb =1 lb-wt × 1ft = 32.2 poundal × 1ft = 32.2 ft-poundal = 1.356 Joule

৫. কিলোগ্রাম-মিটার : এমকেএস পদ্ধতিতে কাজের অভিকর্ষীয় একক হচ্ছে কিলোগ্রাম-মিটার। 1kg ভরের কোনো বস্তুকে অভিকর্ষের বিরুদ্ধে খাড়া 1m উঠালে সম্পন্ন কাজের পরিমাণকে এক কিলোগ্রাম-মিটার (1kg-m) বলে। 1 kg-m =1kg-wt × 1m = 9.8 N × 1m = 9.8 Joule।

বলের দারা কাজ বা ধনাত্মক কাজ

সংজ্ঞা : যদি বল প্রয়োগের ফলে বলের প্রয়োগ বিন্দু বলের দিকে সরে যায় বা বলের দিকে সরণের উপাংশ থাকে, তাহলে সেই বল এবং বলের দিকে সরণের উপাংশের গুণফলকে ধনাত্মক কাজ বা বলের দ্বারা কাজ বলে।

 $W = \overrightarrow{F}$. $\overrightarrow{S} = FS \cos \theta$ সমীকরণ থেকে দেখা যায় যে, $\cos \theta$ ধনাত্মক হলে W ধনাত্মক হয়। বল \overrightarrow{F} এবং সরণ \overrightarrow{S} এর অন্তর্ভুক্ত কোণ θ এর মান 90° কম হলে অর্থাৎ 0° $\leq \theta < 90^\circ$ হলে $\cos \theta$ ধনাত্মক হয়, তখন বলের দিকে সরণের উপাংশ থাকে; ফলে বলের দ্বারা কাজ বা ধনাত্মক কাজ হয়।

পদার্থবিজ্ঞান-প্রথম পত্র

উদাহরণ : একটি বস্তু উপর থেকে মাটিতে ফেলে দিলে বস্তুটি অভিকর্ষ বলের দিকে পড়বে। এক্ষেত্রে প্রযুক্ত বল তথা বস্তুর ওজন \overrightarrow{mg} এবং সরণ \overrightarrow{S} একই দিকে তথা নিচের দিকে হয় ; ফলে বস্তুর উপর অভিকর্ষ বল দ্বারা কাজ হয়েছে বা অভিকর্ষ বলের জন্য ধনাত্মক কাজ হয়েছে বোঝায়।

বলের বিরুদ্ধে কাজ বা ঋণাত্মক কাজ

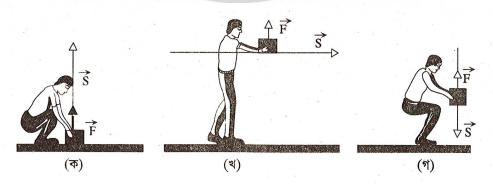
সংজ্ঞা : যদি বল প্রয়োগের ফলে বলের প্রয়োগ বিন্দু বলের বিপরীত দিকে সরে যায় বা বলের বিপরীত দিকে সরণের উপাংশ থাকে তাহলে সেই বল এবং বলের বিপরীত দিকে সরণের উপাংশের গুণফলকে ঋণাত্মক কাজ বা বলের বিরুদ্ধে কাজ বলে

 $W = \overrightarrow{F} \cdot \overrightarrow{S} = FS \cos \theta$ সমীকরণ থেকে দেখা যায় যে, $\cos \theta$ ঋণাত্মক হলে কাজ W ঋণাত্মক হয়। বল \overrightarrow{F} এবং সরণ \overrightarrow{S} এর অন্তর্ভুক্ত কোণ θ এর মান 90° এর বেশি হলে অর্থাৎ 90° < $\theta \le 180^\circ$ হলে $\cos \theta$ ঋণাত্মক হয় এবং তখন বলের বিপরীত দিত্র াণের উপাংশ থাকে; ফলে বলের বিরুদ্ধে কাজ বা ঋণাত্মক কাজ হয়।

উদাহরণ : এক ২ যদি মেঝে থেকে টেবিলের উপর ওঠানো হয়, তাহলে বস্তুর উপর অভিকর্ষ বল তথা বস্তুর ওজন mg খাড়া নিত্রাদকে এবং সরণ S খাড়া উপরের দিকে ক্রিয়া করে। এক্ষেত্রে অভিকর্ষ বল ও সরণ বিপরীতমুখী হওয়ায় অভিকর্ষ বলের বিরুদ্ধে কাজ করা হবে বা অভিকর্ষ বলের জন্য ঋণাত্মক কাজ হবে।

অবশ্য তুমি যে বল প্রয়োগ <mark>করে ব</mark>স্তুকে উপরে উঠিয়েছো, তোমার প্রযুক্ত বলে<mark>র জন্য</mark> ধনাত্মক কাজ হবে।

শূল্য কাজ : বল প্রয়োগে যদি কোনো বস্তুর সরণ বলের লম্ব বরাবর হয়, তবে ঐ বলের দ্বারা কোনো কাজ হয় না। কেননা, এই ক্ষেত্রে $\theta = 90^\circ$ হওয়ায় $W = FS \cos 90^\circ = 0$ । যেমন কোনো বস্তুকে বৃত্তাকার পথে ঘোরায় যে কেন্দ্রমুখী বল, তার দ্বারা কোনো কাজ হয় না। কেননা, প্রতি মুহূর্তে বল ব্যাসার্ধ বরাবর কেন্দ্রের দিকে ক্রিয়া করে আর সরণ হয় বৃত্তের স্পর্শক বরাবর।


নিজে কর : তুমি এ<mark>কটি ব</mark>স্তুকে/বইকে মেঝে থেকে উপরে তোল। এরপর <mark>বস্তুটি</mark>কে সুখম দ্রুতিতে ঘরের এক প্রান্ত থেকে অপর প্রান্তে নিয়ে <mark>যাও।</mark> তারপর বস্তুটিকে

(i) ধরে ধীরে ধীরে নিচে নামাও;

বা, (ii) ছেড়ে দাও;

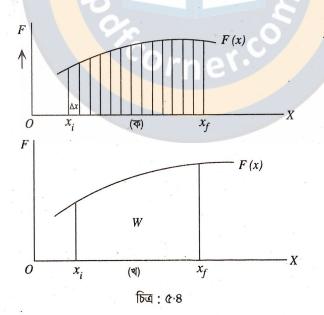
বা, (iii) ধরে সজোরে নিচে নামাও।

বস্তুটিকে উপরে তোলা থেকে শুরু করে নিচে নামানো পর্যন্ত বস্তুটির উপর কোন্ কোন্ বল কী প্রকার কাজ করল ?

চিত্র : ৫.৩

কাজ, শক্তি ও ক্ষমতা

তুমি যখন বস্তুটিকে মেঝে থেকে উপরে তুলছো, তখন তোমার প্রযুক্ত বলের অভিমুখ হচ্ছে বস্তুটির ঊর্ধ্বমুখী সরণের দিকে (চিত্র : ৫.৩ ক)। সুতরাং তোমার প্রযুক্ত বল বস্তুটির উপর ধনাত্মক কাজ সম্পন্ন করে। কিন্তু অভিকর্ষ বল ক্রিয়া করে নিচের দিকে ফলে অভিকর্ষ বলের জন্য ঋণাত্মক কাজ হয়।


বস্তুটিকে নিয়ে হাঁটার সময় তুমি যে ঊর্ধ্বমুখী বল প্রয়োগে বস্তুটিকে ধরে আছো তার অভিমুখ হলো ঘর বরাবর বস্তুটির যে সরণ হয়েছে তার সাথে লম্ব (চিত্র : ৫.৩খ)। সুতরাং এখন তোমার প্রযুক্ত বল বস্তুটির উপর কোনো কাজ করে না, অর্থাৎ তোমার বল দ্বারা বস্তুটির উপর কৃতকাজ শূন্য। একই কথা প্রযোজ্য অভিকর্ষ বলের জন্যও।

এরপর তুমি যখন বস্তুটিকে (i) ধরে ধীরে ধীরে নিচে নামাও তখন বস্তুটিকে হাত দিয়ে ধরে রাখার কারণে তুমি উপরের দিকে বল প্রয়োগ কর যা বস্তুটির নিম্নমুখী সরণের বিপরীতে (চিত্র : ৫.৩গ)। সুতরাং তোমার প্রযুক্ত বল বস্তুটির উপর ঋণাত্মক কাজ সম্পন্ন করে। এ ক্ষেত্রে সরণ অভিকর্ষ বলের দিকে হওয়ায় অভিকর্ষ বলের জন্য ধনাত্মক কাজ হয়। (ii) বস্তুটিকে যখন ছেড়ে দাও, তখন তার উপর তুমি কোনো বলই প্রয়োগ করো না, কেবল অভিকর্ষ বল নিচের দিকে ক্রিয়া করে। সুতরাং অভিকর্ষ বলের জন্য ধনাত্মক কাজ হয়। (iii) যখন বস্তুটিকে ধরে সজোরে নিচের দিকে নামাও, তখন তুমি বস্তুটির সরণের দিকে অর্থাৎ নিচের দিকে বল প্রয়োগ কর। সুতরাং তোমার প্রযুক্ত বল দ্বারা ধনাত্মক কাজ হয়। আবার অভিকর্ষ বল নিচের দিকে ক্রিয়া করায় অভিকর্ষ বলের জন্যও ধনাত্মক কাজ হয়।

৫.৪। পরিবর্তনশীল বল দ্বারা কৃত কাজ

Work Done by a Variable Force

ধ্রব বল তথা অপরিবর্তনশীল বল দ্বারা কোনো কণার উপর কৃত কাজ আমরা হিসাব করেছি। কিন্তু কণার উপর কোনো বল ক্রিয়া করলে সেটি যে তার ক্রিয়াকালে সব সময় ধ্রব থাকবে—এমন নয়। বল একটি ভেক্টর রাশি, তাই এর পরিবর্তন এর মানে, দিকে বা উভয়েই হতে পারে। আমরা কেবল মানের পরিবর্তনের জন্য পরিবর্তনশীল বল বল দ্বারা কৃত কাজ হিসাব করবো।

ধরা যাক, কোনো বস্তুর উপর একটি বল কোনো একটি নির্দিষ্ট দিকে অর্থাৎ একটি সরলরেখা বরাবর ক্রিয়াশীল। যে দিকে বল ক্রিয়া করে সেই দিককে আলোচনার সুবিধার জন্য আমরা X-অক্ষরপে বিবেচনা করি। ধরা যাক, বস্তুটি এই বলের ক্রিয়ায়

পদার্থবিজ্ঞান-প্রথম পত্র

X-অক্ষ বরাবর গতিশীল। বলটির দিক নির্দিষ্ট থাকলেও এর মান সর্বত্র সমান নয়। মনে করি, বলটির মান বস্তুটির অতিক্রান্ত দূরত্ব x এর উপর নির্ভর করে। সুতরাং এই বল F, দূরত্ব x এর একটি অপেক্ষক এবং একে আমরা F(x) রূপে প্রকাশ করি। ৫·৪ চিত্রে x এর বিভিন্ন মানের জন্য F(x) এর আনুষঙ্গিক মান নিয়ে অঙ্কিত লেখচিত্র দেখানো হয়েছে।

এখন আমরা এ বস্তুটির আদি অবস্থান x_i থেকে শেষ অবস্থান $x_{f'}$ এ যাওয়ার জন্য পরিবর্তনশীল বল দ্বারা কৃত কাজ হিসাব করবো। এ জন্য আমরা মোট সরণকে Δx প্রস্তের ক্ষুদ্র ক্ষুদ্র N সংখ্যক সমান অংশে বিভক্ত করি (চিত্র : $c \cdot 8 \sigma$)। এ অংশগুলোর প্রথমটি বিবেচনা করা যাক, যেখানে x_i থেকে $x_i + \Delta x$ পর্যন্ত ক্ষুদ্র সরণ হচ্ছে Δx । এ ক্ষুদ্র সরণকালে বল F(x)এর মান পরিবর্তিত হলেও, সরণ যেহেতু খুবই ক্ষুদ্র, তাই আমরা বলের মানের এই পরিবর্তন নগণ্য বিবেচনা করে বলতে পারি এ ক্ষুদ্র সরণ কালে বল F(x) এর মান ধ্র্ব থাকে। ধরা যাক, F(x) এর এ ধ্রুব মান F_1 । সুতরাং এ অংশে এ বল দ্বারা সম্পন্ন ক্ষুদ্র কাজ ΔW_1 হচ্ছে প্রায়,

$$\Delta W_1 = F_1 \,\Delta x \tag{5.4}$$

অনুরূপভাবে দ্বিতীয় অংশে $x_i + \Delta x$ থেকে $x_i + 2\Delta x$ পর্যন্ত ক্ষুদ্র সরণ Δx । ধরা যাক, F(x) এর এই অংশে প্রায় ধ্রুব মান F_2 । সুতরাং দ্বিতীয় অংশে বল দ্বারা কৃত কাজ হবে প্রায় $\Delta W_2 = F_2 \Delta x$ । বস্তুটিকে x_i থেকে x_f পর্যন্ত সরাতে F(x)বল দ্বারা কৃত মোট কাজ W হবে (5.4) সমীকরণের অনুরূপ N সংখ্যক পদের সমষ্টির প্রায় সমান।

সুতরাং

$$W = \Delta W_1 + \Delta W_2 + \Delta W_3 + \dots + \Delta W_N$$

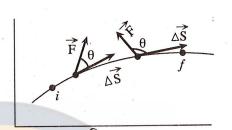
= $F_1 \Delta x + F_2 \Delta x + F_3 \Delta x + \dots + F_N \Delta x$
A), $W = \sum_{k=1}^{N} F_k \Delta x \qquad \dots \qquad (5.5)$

 Δx কে যতো ক্ষুদ্র থেকে ক্ষুদ্রতর তথা বিভক্ত অংশের সংখ্যা বৃহৎ থেকে বৃহত্তর করা যাবে হিসাবকৃত কাজের মান ততো সঠিক কাজের মানের কাছাকাছি পৌছাবে। আমরা বল F(x) দ্বারা কৃত কাজের সঠিক মান পেতে পারি যদি আমরা পরিমাপের সীমার মধ্যে Δx কে শূন্য এবং বিভক্ত অংশের সংখ্যা N কে অসীম করি। তাহলে সঠিক ফল হবে,

$$W = \lim_{\Delta x \to 0} \sum_{k=1}^{N} F_k \Delta x \qquad \dots \qquad (5.6)$$

কিন্তু $\lim_{\Delta x \to 0} \sum_{k=1}^{N} F_k \Delta x$ রাশিটি হচ্ছে ক্যালকুলাসের ভাষায়

$$\int_{x_i}^{x_f} F(x) dx$$
 যা x_i থেকে x_f পর্যন্ত x এর সাপেক্ষে $F(x)$ এর যোগজীকরণ বা সমাকলন নির্দেশ করে।


সুতরাং (5.6) সমীকরণ দাঁড়ায়,

$$W = \int_{x_i}^{x_f} F(x) \, dx$$
 ... (5.7)

সংখ্যাগতভাবে এই রাশিটি হচ্ছে বল বক্ররেখা (force curve) এবং x_i ও x_f সীমার মধ্যে অবস্থিত X-অক্ষের অন্তর্গত ক্ষেত্রের ক্ষেত্রফল (চিত্র : ৫·৪খ)।

পরিবর্তনশীল বল দ্বারা কৃত কাজ : দ্বিমাত্রিক ঘটনা বা ভেক্টর রূপ কোনো কণার উপর ক্রিয়াশীল বল मি দিকে এবং মানে পরিবর্তিত হতে পারে এবং কণাটি একটি বক্রপথে (curved path) চলতে পারে। এই সাধারণ ক্ষেত্রে কাজ হিসাব করার জন্য আমরা কণাটির গতিপথকে বিপুল সংখ্যক ক্ষুদ্র সরণ $\Delta \overrightarrow{S}$ -এ বিভক্ত করি। এরপ প্রতিটি সরণের অভিমুখ হচ্ছে গতিপথের সংশ্লিষ্ট বিন্দুতে পথের সাথে গতির দিকে অন্ধিত

সম্প্রসারিত কর্মকাণ্ড

ম্পর্শক বরাবর। ৫.৫নং চিত্রে এরপ দুটি নির্বাচিত সরণ দেখা যাচ্ছে। এই চিত্রে প্রতিটি অবস্থানে বল \overrightarrow{F} এবং \overrightarrow{F} ও $\Delta \overrightarrow{S}$ এর অন্তর্ভুক্ত কোণ heta

দেখা যাচ্ছে, $\Delta \vec{S}$ সরণ কালে কণার উপর \vec{F} বল দ্বারা কৃত ক্ষুদ্র কাজ ΔW আমরা নি<mark>দ্নোজ</mark> সমীকরণ থেকে হিসাব করতে পারি,

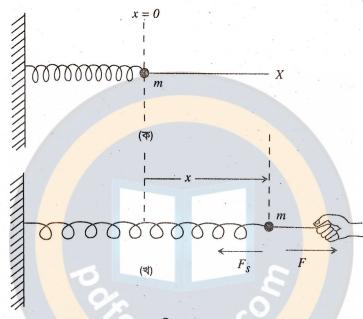
$$\Delta W = \vec{F} \cdot \Delta \vec{S} \qquad \dots \qquad \dots \qquad (5.8)$$

এখানে \overrightarrow{F} হচ্ছে আমরা যে বিন্দুতে সূরণ $\Delta \overrightarrow{S}$ নিয়েছি সেই বিন্দুতে ক্রিয়াশীল বল। কণাটির আদি অবস্থান i থেকে শেষ অবস্থান f-এ যাওয়া কালে (চিত্র : ৫.৫) পরিবর্তনশীল বল \overrightarrow{F} দ্বারা কণাটির উপর কৃত কাজ W হবে প্রতিটি রেখাংশের জন্য কৃত ক্ষুদ্র ক্ষুদ্র কাজের সমষ্টি,

$$\forall \forall \forall, W = \sum \Delta W = \sum \vec{F} \cdot \Delta \vec{S} = \sum F \Delta S \cos \theta \qquad \dots \qquad (5.9)$$

আমরা জানি, রেখাংশ $\Delta \overrightarrow{S}$ গুলো যদি ক্ষুদ্রাতিক্ষুদ্র হয়, তাহলে এগুলোকে অন্তরক (differential) $d\overrightarrow{S}$ দ্বারা এবং সমষ্টিকে যোগজীকরণ দ্বারা প্রতিস্থাপিত করা হয়। ফলে (5.9) সমীকরণ দাঁড়ায়,

$$W = \int dW = \int_{i}^{f} \vec{F} \cdot d\vec{S} \qquad \dots \qquad (5.10)$$


এই যোগজীকরণের মান নির্ণয় করতে হলে কণাটির গতিপথের প্রতিটি বিন্দুতে বল F এবং heta এর মান কীভাবে পরিবর্তিত হচ্ছে তা জানতে হবে। F এবং heta এর মান কণাটির x এবং y স্থানাঞ্চের উপর নির্ভর করে।

পদার্থবিজ্ঞান-প্রথম পত্র

৫.৫। স্থিতিস্থাপক বলের ($F \propto x$) বিপরীতে কৃত কাজ Work done Against the Elastic Force ($F \propto x$)

ম্প্রিং বল

বাইরে থেকে বল প্রয়োগ করলে যদি কোনো বস্তুর আকার বা আয়তন বা উভয়ের পরিবর্তন ঘটে অর্থাৎ বস্তু বিকৃত হয়, তাহলে প্রযুক্ত বল সরিয়ে নিলে যে ধর্মের ফলে বিকৃত বস্তু পূর্বাবস্থায় ফিরে আসে তাকে স্থিতিস্থাপকতা বলে। যে বল প্রয়োগ

চিত্র : ৫.৬

করে বস্তু পূর্বের অবস্থায় ফিরে আসে তাকে স্থিতিস্থাপক বল বলে। স্প্রিং-এর স্থিতিস্থাপকতা ধর্ম রয়েছে। একটি স্প্রিংকে সাম্যাবস্থান বা শিথিল অবস্থান থেকে প্রসারিত বা সঙ্কুচিত করা হোক না কেন সেটি সাম্যাবস্থানে ফিরে আসার জন্য একটা বল প্রয়োগ করে। সুতরাং স্প্রিং কর্তৃক প্রদত্ত বল একটি স্থিতিস্থাপক বল। এটি একটি পরিবর্তনশীল বল, কেননা এর মান সরণের উপর নির্ভর করে। ৫.৬ চিত্রে একটি স্প্রিং দেখানো হয়েছে, যার এক প্রান্ত একটি দৃঢ় অবলম্বনের সাথে এবং অপর প্রান্ত m ভরের একটি কণার সাথে সংযুক্ত। কণাটি অনুভূমিক বরাবর চলাচল করতে পারে। আমরা অনুভূমিক বরাবর অর্থাৎ কণাটি যে দিকে চলতে পারে সে দিককে X-অক্ষ ধরি। স্থিহিট যখন শিথিল বা স্বাভাবিক অবস্থায় (relax) থাকে তখন কণাটির অবস্থানকে X- অক্ষের মূলবিন্দু (x = 0) বিবেচনা করা যাক (চিত্র : ৫.৬ ক)। যখন কণাটির উপর বাইরে থেকে F বল প্রয়োগ করা হয়, তখন স্প্রিং একটি বিপরীতমুখী বল F_s প্রয়োগ করে (চিত্র : ৫.৬ খ)। এই বল কণাটির সরণ x এর সমানুশাতিক, অর্থাৎ

$$F_s \propto x$$

$$\{1, F_s = -kx\}$$

(5.11)

এখানে k একটি সমানুপাতিক ধ্রুবক। এটি একটি ধনাত্মক রাশি, একে বলা হয় স্প্রিং-এর বল ধ্রুবক। (5.11) সমীকরণটি স্প্রিং-এর জন্য বলের সূত্র এবং এটি হুকের সূত্র নামে পরিচিত। (5.11) সমীকরণের ঋণাত্মক চিহ্ন থেকে বোঝা যায়, স্প্রিং কর্তৃক প্রদন্ত বলের দিক সর্বদা কণাটির সরণের বিপরীত দিকে। এই বল কণাটিকে তার আদি অবস্থানে ফিরিয়ে আনতে চায়। তাই এই বলকে প্রত্যায়নী বল বলা হয়। (5.11) সমীকরণে x = 1 একক হলে $k = -F_s$ হয়। এর থেকে স্থিং ধ্রবকের সংজ্ঞা দেয়া হয়। কোনো স্প্রিং এর মুক্ত প্রান্তের একক সরণ ঘটালে স্থিটি সরণের বিপরীত

দিকে যে বল প্রয়োগ করে তাকে ঐ স্থিং-এর স্থিং ধ্রুবক বলে। এ ধ্রুবকের মান স্থিং-এর দৈর্ঘ্য, এর জ্যামিতিক গঠন এবং পদার্থের স্থিতিস্থাপক ধর্মের উপর নির্ভর করে। এর একক নিউটন/মিটার (N m⁻¹) এবং এর মাত্রা MT⁻²।

কোনো স্প্রিং-এর স্প্রিং ধ্রুবক 1800 N m⁻¹ বলতে বোঝায় ঐ স্প্রিং-এর মুক্ত প্রান্তের 1 m সরণ ঘটাতে স্প্রিং-এর উপর 1800 N বল প্রয়োগ করতে হবে বা স্প্রিং-এর মুক্ত প্রান্তের 1 m সরণ ঘটলে স্প্রিংটি সরণের বিপরীত দিকে 1800 N বল প্রয়োগ করে।

স্থিতিস্থাপক বল তথা স্প্রিং বলের বিপরীতে কাজের হিসাব

৫.৬ চিত্রে প্রদর্শিত স্প্রিং-এর এক প্রান্ত দৃঢ়ভাবে আবদ্ধ এবং অপর প্রান্ত m ভরের একটি কণার সাথে সংযুক্ত। কণাটি যখন আদি অবস্থান x = 0 থেকে x = x অবস্থানে যায় তখন কণাটির উপর স্প্রিং $F_s = -kx$ বল প্রয়োগ করে। এই বলের বিপরীতে স্প্রিং-এর মুক্ত প্রান্তের x সরণ ঘটানোর জন্য বাইরে থেকে স্প্রিং বলের সমান ও বিপরীত $F = -F_s = kx$ বল প্রয়োগ করতে হয়। এই বলের জন্য কৃত কাজ,

$$W = \int_{0}^{x} F dx = \int_{0}^{x} kx \, dx = k \int_{0}^{x} x dx = k \left[\frac{x^2}{2} \right]_{0}^{x}$$

= $\frac{1}{2} k (x^2 - 0)$
 $\therefore W = \frac{1}{2} kx^2$... (5.12)

যেহেতু k একটি ধ্রুবক, সুতরাং স্থিং বলের বিপরীতে কৃত কাজ সরণের বর্গের সমানুপাতিক। লক্ষ্যণীয় যে, স্থিংটি x পরিমাণ প্রসারিত করা হোক বা সঙ্কুচিত করা হোক অর্থাৎ x ধনাত্মক হোক আর ঋণাত্মক হোক স্থিং বলের বিপরীতে কৃত কাজ একই।

সম্প্রসারিত কর্মকাণ্ড

শ্বিং বল দ্বারা কৃত কাজের হিসাব

৫·৬ চিত্রে একটি স্প্রিং দেখানো হয়েছে যার এক্থ্রান্ত দৃঢ়ভাবে আবদ্ধ এবং অপর প্রান্ত *m* ভরের একটি কণার সাথে সংযুক্ত। কণাটি যখন তার আদি অবস্থান _{Xi} থেকে শেষ অবস্থান _{Xj}-এ যায় তখন কণাটির উপর স্প্রিং দ্বারা কৃত কাজ *W_s* হিসাব করা যাক। আমরা জানি, কৃত কাজ

$$W_s = \int_{x_i}^{y} F_s(x) \, dx$$

কিন্তু স্প্রিং এর প্রযুক্ত বল F_s , কণাটির সরণ x এর সমানুপাতিক ও বিপরীতমুখী অর্থাৎ $F_s = -kx$

 $\therefore W_s = \int (-kx) \, dx$

$$= -k \int_{x_i} x dx$$
$$= -(k) \left[\frac{x^2}{2} \right]_{x_i}^{x_f}$$
$$= -\frac{1}{2} k \left[x_f^2 - x_i^2 \right]$$
$$\therefore W_s = \frac{1}{2} k x_i^2 - \frac{1}{2} k x_f^2$$

(5.13)

ম্প্রিং বল দ্বারা কৃত ধনাত্মক কাজ

এই সমীকরণ থেকে দেখা যায়, স্থিং দ্বারা কণাটির উপর কৃত কাজের মান ধনাত্মক হয় যদি $x_i^2 > x_f^2$ হয় বা $|x_i| > |x_f|$ হয়, অর্থাৎ যদি কণাটির আদি সরণের মান এর শেষ সরণের মানের চেয়ে বড় হয়। স্থিংটি ধনাত্মক কাজ সম্পন্ন করে যখন এটি কণাটিকে x = 0 অবস্থানে ফিরিয়ে আনতে ব্যবহৃত হয়, অর্থাৎ যখন স্থিংটি তার প্রসারিত বা সঙ্কুচিত অবস্থা থেকে শিথিল অবস্থায় ফিরে আসে।

শ্প্রিং বল দ্বারা কৃত ঋণাত্মক কাজ

কণাটির আদি সরণের মান শেষ সরণের মানের চেয়ে ছোট হলে অর্থাৎ $x_i^2 < x_f^2$ বা, $|x_i| < |x_f|$ হলে স্প্রিংটি কণাটির উপর ঋণাত্মক কাজ সম্পন্ন করে। যখন বাইরে থেকে বল প্রয়োগ করে কণাটিকে x = 0 অবস্থান থেকে অন্য অবস্থানে নিয়ে যাওয়া হয় অর্থাৎ স্প্রিংটিকে তার শিথিল অবস্থা থেকে প্রসারিত বা সন্ধুচিত করা হয় তখন স্প্রিং কর্তৃক কৃত কাজ ঋণাত্মক হয়।

যখন কণাটির আদি অবস্থান x = 0 থেকে সরণ x হয়, তখন কণাটির উপর স্থিং দ্বারা কৃত কাজ বের করতে আমরা (5.13) সমীকরণে $x_i = 0$ এবং $x_f = x$ বসিয়ে পাই,

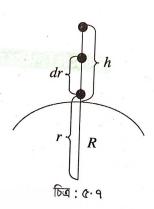
$$W_s = -\frac{1}{2}kx^2$$
 ... (5.14)

(5.14) সমীকরণ থেকে দেখা যা<mark>য় যে, স্প্রিংটিকে সঙ্কুচিত করে x সরণ</mark> ঘটাতে এবং স্প্রিংটিকে প্রসারিত করে কণাটির x সরণ ঘটাতে স্প্রিং দ্বারা কৃত কাজের পরিমাণ একই এবং তা ঋণাত্মক। কারণ (5.14) সমীকরণে x এর বর্গ ব্যবহৃত হয়েছে, ফলে সরণ x-এর মান ধনাত্মক বা ঋণাত্মক যাই হোক না কেন x² ধনাত্মক এবং কাজ ঋণাত্মক হবেই।

(e. arphi) অভিকর্ষ বলের $\left(F \propto rac{1}{r^2} ight)$ বিপরীতে কাজ

Work Done Against the Force of Gravity $\left(F \propto \frac{1}{r^2}\right)$

আমরা জানি, এ মহাবিশ্বের যেকোনো দুটি বস্তু কণা একে অপরকে একটি বল দ্বারা আকর্ষণ করে। এ বলকে মহাকর্ষ বল বলা হয়। এটি একটি পরিবর্তনশীল বল—দুটি নির্দিষ্ট বস্তুর জন্য এই বলের মান তাদের মধ্যবর্তী দূরত্বের উপর নির্ভর করে। প্রকৃতপক্ষে এ বল (F) বস্তুদ্বয়ের দূরত্বের বর্গের (r^2) ব্যস্তানুপাতে পরিবর্তিত হয়, অর্থাৎ $F \propto \frac{1}{r^2}$ । আমরা জানি, m এবং M ভরের দুটি কণা পরস্পর থেকে r দূরত্বে থাকলে মহাকর্ষ সূত্র অনুসারে তাদের মধ্যে আকর্ষণ বল,


$$F = \frac{GMm}{r^2}$$

(5.15)

দুটি বস্তুর একটি যদি হয় পৃথিবী তাতে যে আকর্ষণ হয় তাকে অভিকর্ষ বলে অর্থাৎ কোনো বস্তুর উপর পৃথিবীর আকর্ষণকে অভিকর্ষ বলে। ধরা যাক, M = পৃথিবীর ভর, R = পৃথিবীর ব্যাসার্ধ, m = ভূ-পৃষ্ঠে অবস্থিত কোনো বস্তুর ভর, r = বস্তুর ও পৃথিবীর কেন্দ্রের মধ্যবর্তী দূরত্ব। তাহলে বস্তুর উপর অভিকর্ষ বল

$$F_G = -\frac{GMm}{r^2}$$

এখানে ঋণাত্মক চিহ্ন আকর্ষণ বল নির্দেশ করছে। পৃথিবী এই বলে বস্তুটিকে তার কেন্দ্রের দিকে আকর্ষণ করে। এখন যদি বস্তুটিকে ভূ-পৃষ্ঠ থেকে h উচ্চতায় ওঠাতে হয় অর্থাৎ বস্তুটি r = R থেকে r = R + h অবস্থানে যায় তখন বস্তুটির উপর পৃথিবী $F_G = -\frac{GMm}{r^2}$ বল প্রয়োগ করে। এ বলের বিপরীতে বস্তুটিকে h উচ্চতায় ওঠাতে (চিত্র : c ৭) অর্থাৎ বস্তুটিকে h উচ্চতায় ওঠাতে (চিত্র : c ৭) অর্থাৎ বস্তুটিকে h

(5.16)

বিপরীতে বস্তুটিকে h উচ্চতায় ওঠাতে (চিত্র : ৫.৭) অর্থাৎ বস্তুটির h সরণ ঘটানোর জন্য বাইরে থেকে অভিকর্ষ বলের সমান ও বিপরীত $F = -F_G = rac{GMm}{r^2}$ বল প্রয়োগ করতে হয়। এ বলের জন্য কৃত কাজ,

$$W = \int_{r}^{r} \frac{F + h}{F dr}$$
$$= \int_{R}^{R+h} \frac{GMm}{r^{2}} dr$$
$$= GMm \int_{R}^{R+h} \frac{dr}{r^{2}}$$
$$= GMm \left[-\frac{1}{r} \right]_{R}^{R+h}$$
$$= GMm \left(-\frac{1}{R+h} + \frac{1}{R} \right)$$
$$\cdot W = GMm \left(\frac{1}{R} - \frac{1}{R+h} \right)$$

বা,
$$W = GMm \frac{R+h-R}{R(R+h)}$$

$$\therefore W = \frac{GMmh}{R(R+h)} \qquad \dots \qquad (5.17)$$

এখন যদি পৃথিবীর ব্যাসার্ধ R এর তুলনায় বস্তুর সরণ h খুব ক্ষুদ্র হয় অর্থাৎ h << R হয়, তাহলে (5.17) সমীকরণে Rএর তুলনায় হরের h কে উপেক্ষা করে আমরা পাই,

$$W = \frac{GMm}{R^2} h \tag{5.18}$$

$$\begin{aligned} \operatorname{cress} \frac{GMm}{R^2} & \operatorname{cress} \frac{GMm}{R^$$

মহাকর্ষ বল দ্বারা কৃত ধনাত্মক কাজ

(5.20) সমীকরণ থেকে দেখা যায় যে, দুটি বস্তু কণার মধ্যে দূরত্ব ব্রাস করা হলে অর্থাৎ $r_b < r_a$ হলে $\frac{1}{r_b} > \frac{1}{r_a}$ হয়, ফলে W_{ab} ধনাত্মক হয় ; সুতরাং মহাকর্ষ বল ধনাত্মক কাজ সম্পন্ন করে। যেমন, আমরা যদি উপর থেকে একটি বস্তু ছেড়ে দেই, এটি মহাকর্ষ বলের (এ ক্ষেত্রে অভিকর্ষ বল) প্রভাবে বলের দিকে নিচে পড়বে অর্থাৎ পৃথিবী ও বস্তুর মধ্যে দূরত্ব ব্রাস পাবে। এর ফলে মহাকর্ষ বল বস্তুটির উপর ধনাত্মক কাজ করবে।

মহাকর্ষ বল দ্বারা কৃত ঋণাত্মক কাজ

যদি $r_b > r_a$ হয়, অর্থাৎ যদি কণা দুটির মধ্যে দূরত্ব বৃদ্ধি পায়, তাহলে $\frac{1}{r_b} < \frac{1}{r_a}$ হয়, ফলে (5.20) সমীকরণে W_{ab} ঋণাত্মক হয়, অর্থাৎ মহাকর্য বল ঋণাত্মক কাজ সম্পন্ন করে। কণাদ্বয়ের মধ্যে দূরত্ব বৃদ্ধি করতে হলে বাইরে থেকে বল প্রয়োগ করতে হবে, সেই বাহ্যিক প্রযুক্ত বল দ্বারা কৃত কাজ অবশ্য ধনাত্মক হবে।

যদি বস্তুটিকে উপরে ওঠাতে যাই অর্থাৎ পৃথিবী ও বস্তুর মধ্যে দূরত্ব বৃদ্ধি করতে যাই, তাহলে মহাকর্ষ বলের বিরুদ্ধে কাজ করতে হবে ফলে মহাকর্ষ বলের জন্য কাজ ঋণাত্মক হবে, কিন্তু আমাদের প্রযুক্ত বলের জন্য ধনাত্মক কাজ হবে।

৫.৭। স্থিতিস্থাপক বল ও অভিকর্ষ বলের বিপরীতে সম্পাদিত কাজের তুলনা

সমীকরণ (5.14) থেকে দেখা যায<mark>় স্থিতি</mark>স্থাপক বলের বিপরীতে সম্পাদিত কাজ দূরত্বে<mark>র বর্গে</mark>র সমানুপাতিক অর্থাৎ

 $W \propto x^2$

এবং (5.20) সমীকরণ থেকে <mark>অভিক</mark>র্ষ বলের বিপরীতে সম্পাদিত কাজ দূরত্বের সমানুপা<mark>তিক।</mark>

অর্থাৎ $W \propto h$

সুতরাং অভিকর্ষ বলের বিপরীতে সরণ দ্বিগুণ হলে কৃত কাজ দ্বিগুণ হবে, কিন্তু স্থিতিস্থাপক বলের বিপরীতে সরণ দ্বিগুণ হলে কাজ চার গুণ হবে। তেমনি, অভিকর্ষ বলের বিপরীতে সরণ তিনগুণ হলে কৃতকাজও তিনগুণ হবে, কিন্তু স্থিতিস্থাপক বলের বিপরীতে সরণ তিনগুণ হলে কাজ নয় গুণ হবে।

৫.৮। শক্তি

Energy

কোনো বস্তু যদি কাজ করতে পারে, তখন আমরা বলি যে, এ বস্তুর শক্তি আছে।

সংজ্ঞা : কোনো বস্তুর কাজ করার সামর্থ্যকে শক্তি বলে। বস্তু সর্বমোট যতটুকু কাজ করতে পারে তা দিয়েই বস্তুর শক্তির পরিমাপ করা হয়।

যেহেতু কোনো বস্তুর শক্তির পরিমাপ করা হয় তার দ্বারা সম্পন্ন কাজের পরিমাণ থেকে; সুর্তরাং শক্তি ও কাজের পরিমাণ অভিন্ন। কাজের মতো শক্তিও স্কেলার রাশি।

মাত্রা ও একক : শক্তির মাত্রা ও কাজের মাত্রা একই অর্থাৎ ML²T⁻²।

শক্তির একক ও কাজের একক একই অর্থাৎ জুল (J)।

কিলোওয়াট-ঘণ্টা : সাধারণত বিদ্যুৎ শক্তির হিসাব-নিকাশের সময় কিলোওয়াট-ঘণ্টা (kWh) এককটি ব্যবহৃত হয়। এক কিলোওয়াট ক্ষমতা সম্পন্ন কোনো যন্ত্র এক ঘণ্টা কাজ করলে যে শক্তি ব্যয় হয় তাকে এক কিলোওয়াট ঘণ্টা বলে।

 $1 \text{ kWh} = 1000 \text{ Wh} = 1000 \text{ J} \text{ s}^{-1} \times 3600 \text{ s}$

:. 1 kWh = 3.6×10^{6} J

শক্তির অন্যান্য অপ্রচলিত একক ৫.৩ অনুচ্ছেদে আলোচনা করা হয়েছে।

পদার্থবিজ্ঞান-প্রথম পত্র

শক্তি আছে বলেই এ জগৎ গতিশীল। শক্তি না থাকলে জগৎ অচল হয়ে পড়বে। আলোক শক্তি আছে বলে আমরা দেখতে পাই, শব্দ শক্তি আছে বলে আমরা শুনতে পাই। যান্ত্রিক শক্তির বদৌলতে আমরা চলাফেরা করি। বিদ্যুৎ শক্তির সাহায্যে পাখা ঘুরছে, কলকারখানা চলছে। এই মহাবিশ্বে শক্তি নানারপে বিরাজ করছে। মোটামুটিভাবে আমরা শক্তির নিমোক্ত রপগুলো পর্যবেক্ষণ করি।

১। যান্ত্রিক শক্তি, ২। তাপ শক্তি, ৩। শব্দ শক্তি, ৪। আলোক শক্তি, ৫। চৌম্বক শক্তি, ৬। বিদ্যুৎ শক্তি,

৭। রাসায়নিক শক্তি, ৮। নিউক্লিয় শক্তি ও ৯। সৌর শক্তি।

৫.৯। যান্ত্রিক শক্তি

Mechanical Energy

কোনো বস্থুর মধ্যে তার গতি, অবস্থান বা ভৌত অবস্থার জন্য কাজ করার যে সামর্থ্য তথা শক্তি থাকে তাকে যান্ত্রিক শক্তি বলে। যান্ত্রিক শক্তির দুটি রূপ আছে—গতি শক্তি ও বিভব শক্তি।

৫.১০। গতিশক্তি

Kinetic Energy

সংজ্ঞা : কোনো গতিশীল <mark>বস্তু গতি</mark>শীল থাকার জন্য কাজ করার যে <mark>সামর্থ্য</mark> অর্থাৎ শক্তি অর্জন করে তাকে গতিশক্তি বলে।

কোনো গতিশীল বস্তু স্থির <mark>অবস্থা</mark>য় আসার পূর্ব পর্যন্ত যে পরিমাণ কাজ করতে পার<mark>ে তার</mark> দ্বারা বস্তুটির গতিশক্তি পরিমাপ করা হয়। অন্যভাবে বলা যেতে পারে, একটি গতিশীল বস্তু যে বেগে গতিশীল, বস্তুটিকে স্থির অবস্থান থেকে ঐ বেগ দিতে বস্তুটির উপর যে পরিমাণ কাজ <mark>করতে</mark> হয়েছে তাই হচ্ছে বস্তুটির গতি<u>শ</u>ক্তি।

গতিশক্তির পরিমাপ

ধরা যাক, m ভরের কোনো স্থির বস্তুর উপর নির্দিষ্ট দিকে F বল প্রয়োগে বস্তুটিকে গতিশীল করা হয়। ধরা যাক, এই বল ধ্রুব নয়, তবে এর পরিবর্তন কেবল এর মানের পরিবর্তনে সাধিত হয়। আরো ধরা যাক, এই বল প্রয়োগের ফলে বস্তুটির বলের দিকে সরণ ঘটে এবং এই দিক X-অক্ষ বরাবর। এই বল যদি বস্তুটির বেগ শূন্য থেকে ν তে উন্নীত করে, তাহলে কৃত মোট কাজ হবে,

$$W = \int_{v}^{v} F dx$$
$$= 0$$

কিন্তু নিউটনের গতির দ্বিতীয় সূত্র থেকে আমরা জানি, F = ma। এখন তৃরণ a কে লেখা যায়,

$$a = \frac{dv}{dt} = \frac{dv}{dx} \cdot \frac{dx}{dt} = \frac{dv}{dx}v = v\frac{dv}{dx}$$

সুতরাং

$$W = \int_{v}^{v} Fdx = \int_{v=0}^{v=v} madx = \int_{v=0}^{v=v} mv \frac{dv}{dx} dx = \int_{0}^{v} mvdv = m \left[\frac{v^2}{2}\right]_{0}^{v}$$
$$W = \frac{1}{2} (mv^2 - 0) = \frac{1}{2}mv^2$$

<u>୭୭</u>୫

কিন্তু সংজ্ঞানুসারে এই কৃত কাজই হচ্ছে বস্তুটির গতিশক্তি K

$$\therefore K = \frac{1}{2}mv^2 \qquad \dots \qquad (5.21)$$

সুতরাং নির্দিষ্ট ভরের কোনো বস্তুর গতিশক্তি তার বেগের বর্গের সমানুপাতিক।

গতিশক্তি ও ভরবেগের সম্পর্ক

(5.21) সমীকরণকে লেখা যায়, $K = \frac{1}{2} \frac{m^2 v^2}{m}$

কিন্তু mv হচ্ছে বস্তুর ভরবেগ p

$$\therefore \quad K = \frac{p^2}{2m}$$

বা,
$$p = \sqrt{2m K}$$

কাজ-শক্তি উপপাদ্য (Work-Energy Theorem)

বিবৃতি : কোনো বস্তুর উপর প্রযুক<mark>্ত বল দ</mark>ারা কৃতকাজ বস্তুটির গতিশক্তি<mark>র পরিবর্তনে</mark>র সমান ।

্রধ্বে বলের জন্য প্রতিপাদন : ধরা যাক, v_o বেগে গতিশীল m ভরের কোনো বস্তুর উপর F ধ্রুব বল ক্রিয়া করে। এর ফলে বস্তুটির বেগ হয় v এবং ঐ <mark>সময়ে</mark> বস্তুটি বলের দিকে x দূরত্ব অতিক্রম করে।

সুতরাং বল দ্বারা কৃত কাজ

$$W = Fx$$

এই বল প্রয়োগের ফলে বস্তুর প্রবন্ধ ব ত্বরণ a হলে, নিউটনের গতির দ্বিতীয় সূত্রানুসারে F = ma $\therefore W = max$

কিন্তু গতির সমীকরণ থেকে আমরা জানি, $v^2 = v_o^2 + 2ax$ বা, $ax = \frac{v^2 - v_o^2}{2}$

সুতরাং
$$W = m\left(\frac{v^2 - v_o^2}{2}\right) = \frac{1}{2}mv^2 - \frac{1}{2}mv_o^2$$

কিন্তু $\frac{1}{2} m v_o^2$ হচ্ছে বস্তুর আদি গতিশক্তি K_o এবং $\frac{1}{2} m v^2$ হচ্ছে শেষ গতিশক্তি K।

$$W = K - K_o = \Delta K$$

(5.23)

(5.22)

∴ বল দ্বারা কৃত কাজ = বস্তুটির গতিশক্তির পরিবর্তন।

পরিবর্তনশীল বলের জন্য প্রতিপাদন : ধরা যাক, কোনো কণার উপর পরিবর্তনশীল বল F ক্রিয়া করছে। বলের মান পরিবর্তনশীল হলেও এর দিক অপরিবর্তনশীল। সেক্ষেত্রে কণাটির সরণের অভিমুখ বলের দিকেই হবে। ধরা যাক, কণাটি X-অক্ষ বরাবর গতিশীল। আরো ধরা যাক, শুরুতে বস্তুটির x_o অবস্থানে বেগ v_o এবং শেষে x অবস্থানে বেগ v। এখন কণাটিকে x_o অবস্থান থেকে x অবস্থানে সরাতে প্রযুক্ত বল দ্বারা কৃত কাজের পরিমাণ

$$W = \int_{x_0}^{x} F \, dx$$

কিন্তু নিউটনের গতির দ্বিতীয় সূত্র থেকে আমরা জানি,

F = maআবার, $a = \frac{dv}{dt} = \frac{dv}{dx} \cdot \frac{dx}{dt} = \frac{dv}{dx} \cdot v = v \frac{dv}{dx}$

$$\therefore F = mv \frac{dv}{dx}$$

সুতরাং সম্পাদিত কাজ, $W = \int_{x_0}^{x} mv \frac{dv}{dx} dx$

যখন $x = x_0$ তখন $v = v_0$

এবং যখন x = x তখন v = v

: W =
$$\int_{v_0}^{v} mv dv = m \int_{v_0}^{v} v dv = m \left[\frac{v^2}{2} \right]_{v_0}^{v} = \frac{1}{2} mv^2 - \frac{1}{2} mv_0^2$$

কিন্তু $\frac{1}{2}mv_o^2$ হচ্ছে বস্তুটির আদি গতিশক্তি K_o এবং $\frac{1}{2}mv^2$ হচ্ছে শেষ গতিশক্তি K।

 $\therefore W = K - K_o = \Delta K$

পরিবর্তনশীল বল দ্বারা কৃতকাজ = বস্তুটির গতিশক্তির পরিবর্তন।

৫.১১। বিভব শক্তি বা স্থিতি শক্তি Potential Energy

কোনো বস্তু তার ভৌত <mark>অবস্থা</mark> বা অবস্থানের কারণে তার মধ্যে শক্তি সঞ্চিত রা<mark>খতে</mark> পারে। বস্তুর মধ্যে সঞ্চিত এই শক্তিকে বলা হয় বিভব শক্তি।

সংজ্ঞা : স্বাভাবিক অবস্থা বা অবস্থান পরিবর্তন করে কোনো বস্তুকে অন্য কোনো অবস্থায় বা অবস্থানে আনলে বস্তু কাজ করার যে সামর্থ্য অ<mark>র্জন</mark> করে তাকে বিভব শক্তি বলে।

ব্যাখ্যা : একটি শ্র্যিং বা রাবার ব্যান্ডকে টান টান করলে এই টান টান অবস্থার জন্য এর মধ্যে বিভব শক্তি থাকে; কেননা, এটি তার পূর্ববর্তী শিথিল অবস্থায় ফিরে আসার সময় কাজ করতে পারে। এটি অন্য কোনো বস্তুকে স্থানান্তরিত করতে পারে। কোনো বস্তুকে ভূ-পৃষ্ঠ থেকে উপরে ওঠালে অভিকর্ষ বলের বিরুদ্ধে কাজ করতে হয়। এই অবস্থানে বস্তুর মধ্যে অভিকর্ষজ বিভব শক্তি থাকে; কেননা, বস্তুটি যখন ভূ-পৃষ্ঠে পড়ে তখন সেটি অন্য বস্তুর উপর কাজ করতে পারে। অন্য কোনো বস্তুকে উপরে ওঠাতে পারে।

(ক) অভিকর্ষজ বিভব শক্তি

যখন m ভরের কোনো বস্তুকে ভূ-পৃষ্ঠ থেকে h উচ্চতায় ওঠানো হয়, তখন অভিকর্ষ বলের বিরুদ্ধে কৃত কাজই হচ্ছে বস্তুতে সঞ্চিত বিভব শক্তির পরিমাপ। m ভরের বস্তুকে ত্বরণ ছাড়া সমবেগে উপরের দিকে ওঠাতে প্রয়োজনীয় বল F হচ্ছে বস্তুর উপর প্রযুক্ত অভিকর্ষ বল তথা বস্তুর ওজন mg এর সমান।

সুতরাং অভিকর্ষজ বিভব শক্তি = অভিকর্ষ বলের বিরুদ্ধে কৃত কাজ

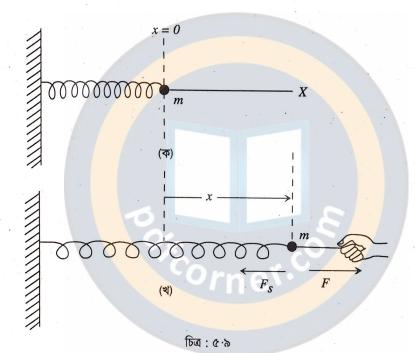
$$U = Fh$$

$$= mgh$$

$$: U = mgh$$

(5.24)

(5.24) সমীকরণ থেকে দেখা যায় যে, কোথা থেকে উচ্চতা h পরিমাপ করা হয়েছে তার উপর অভিকর্ষজ বিভব শক্তি নির্ভর করে, অর্থাৎ কোথায় h = 0 ধরা হয়েছে তার উপর বিভব শক্তি নির্ভরশীল। সুতরাং অভিকর্ষজ বিভব শক্তি কোনো বস্থ বা তার অবস্থানের কোনো পরম গুণ বা ধর্ম নয়, বরং বিভব শক্তি নির্ভর করে কোনো প্রসঙ্গ তলের সাপেক্ষে তা পরিমাপ করা


কাজ, শক্তি ও ক্ষমতা

হচ্ছে তার উপর। মনে কর, তোমার পড়ার টেবিলের উপর একটি বই আছে। বই এর কিছু উপরে তুমি একটি কলম ধরে আছ। কলমটির বিভব শক্তি কত १ কলমটির বিভব শক্তি একেকটি তলের সাপেক্ষে একেক রকম। বই এর সাপেক্ষে কলমটির বিভব শক্তি যত হবে, টেবিলের সাপেক্ষে তার চেয়ে বেশি হবে। আবার ঘরের মেঝের সাপেক্ষে আরো বেশি হবে।

(5.24) সমীকরণ থেকে দেখা যায় যে, কোনো বস্তুর অভিকর্ষজ বিভবশক্তি প্রসঙ্গ তল থেকে তার উচ্চতার সমানুপাতিক।

(খ) ম্প্রিং-এর বিভব শক্তি

ধরা যাক, এক প্রান্তে দৃঢ়ভাবে আবদ্ধ একটি স্প্রিং-এর মুক্ত প্রান্তে *m* ভরের একটি বস্তু আটকানো আছে (চিত্র : ৫·৯ক)। বস্তুটি একটি ঘর্ষণবিহীন তলের উপর চলাচল করতে পারে। আমরা জানি, স্প্রিংটিকে টান টান করতে স্প্রিং

বলের বিরুদ্ধে কাজ করতে হবে। স্প্রিং বলের বিরুদ্ধে কৃত এই কাজই স্প্রিং-এ বিভব শক্তি হিসেবে বিরাজ করবে। স্প্রিংটিকে যখন তার শিথিল অবস্থা x = 0 থেকে x = x অবস্থানে টান টান করা হয় (চিত্র ৫ ৯খ), তখন বস্তুটির উপর প্রযুক্ত স্প্রিং-এর বল $F_s = -kx$ । এখন বস্তুটিকে x দূরত্ব সরাতে তার উপর এর সমান ও বিপরীতমুখী F = kx বল প্রয়োগ করে কাজ করতে হবে। এই বল দ্বারা কৃত কাজই হবে বস্তুটির সঞ্চিত্র বিভব শক্তি।

∴ বিভব শক্তি
$$U = \int_{0}^{x} F dx$$

বা, $U = \int_{0}^{x} kx dx = k \left[\frac{x^2}{2} \right]_{0}^{x}$
∴ $U = \frac{1}{2} kx^2$

পদার্থ-১ম (হাসান) -২২(ক)

(5.25)

সুতরাং কোনো স্প্রিং এর সঞ্চিত বিভবশক্তি তার মুক্তপ্রান্তের সরণের বর্গের সমানুপাতিক।

ম্প্রিংযুক্ত খেলনাকে পিছন দিক টানলে স্প্রিং সঙ্কুচিত হয়ে বিভব শক্তি সঞ্চয় করে। এখন ছেড়ে দিলে স্প্রিংটি প্রসারিত হয় এবং এই সঞ্চিত বিভব শক্তি গতিশক্তিতে রূপান্তরিত হয়ে খেলনাটিকে সামনের দিকে এগিয়ে নেয়।

৫.১২। ব্যবহারিক

Practical

স্প্রিং সংক্রান্ত পরীক্ষার যান্ত্রিক ব্যবস্থা :

কোনো দৃঢ় অবলম্বন থেকে একটি স্প্রিং ঝুলানো আছে। স্প্রিং-এর পাশে একটি মিলিমিটারে দাগাস্কিত স্কেল খাড়াভাবে রাখা আছে। স্প্রিং-এর মুক্ত প্রান্তে একটি ওজন ধারক সংযুক্ত। স্প্রিং-এর প্রান্তে একটি সূচক অনুভূমিকভাবে আটকানো থাকে যেটি স্প্রিং সস্কুচিত ও প্রসারিত হলে স্কেলের গা বেয়ে ওঠানামা করতে পারে (চিত্র : ৫.১০)।

মূল তত্ত্ব : ধরা যাক, একটি স্প্রিং কোনো দৃঢ় অবলম্বন থেকে ঝুলানো আছে। এর মুক্ত প্রান্তে *m* ভর বেঁধে দিলে এটি প্রসারিত হবে। স্প্রিংটি প্রসারিত হওয়ার ফলে স্প্রিং বলের বিরুদ্ধে অভিকর্ষীয় বল দ্বারা কাজ সম্পাদিত হবে। স্থিং বলের বিরুদ্ধে কৃত এ কাজই স্থিং-এ বিভব শক্তি হিসেবে বিরাজ করে। ভর ঝুলানোর ফলে স্থিংটি যদি সাম্যাবস্থান থেকে *x* পরিমাণ প্রসারিত হয় তাহলে স্থিং-এ সঞ্চিত বিভব শক্তি,

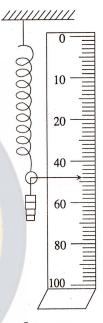
 $U = \frac{1}{2} kx^2$ (1)

এখানে, k = স্প্রিং ধ্রুবক।

F বল প্রয়োগে যদি স্পিংটি সাম্যাবস্থা থেকে x পরিমাণ প্রসারিত হয় তাহলে, F = kx

বা, mg = kx

x পরিমাপ করে সমীকরণ (2) থেকে k বের করে সমীকরণ (1) এর সাহায্যে স্প্রিং-এর বিভব শক্তি U নির্ণয় করা যায়।


যন্ত্রপাতি : ভর ঝুলানোর ব্যবস্থাসহ সূচক লাগানো একটি স্প্রিং, স্কেল, প্রয়োজনীয় ভর।

কাজের ধারা

১। স্প্রিং-এর সাথে লাগানো সূচকের প্রাথমিক পাঠ l_1 লক্ষ্য করা হয়।

২। স্প্রিং-এর ওজন ধারকে m ভর ঝুলানো হয়। স্প্রিংটি প্রসারিত হয়ে স্থির অবস্থানে আসলে সূচকের পাঠ l_2 নেওয়া হয়। $l_2 - l_1$ হচ্ছে m ভরের জন্য স্প্রিং এর প্রসারণ x।

৩। বিভিন্ন ভরের জন্য উপরিউক্ত কার্যক্রম পাঁচবার পুনরাবৃত্তি করে χ নির্ণয় করা হয়।

পর্যবেক্ষণ	সূচকের	ওজন	ভর ঝুলানোর	স্প্রিং এর	স্প্রিং এর	ম্প্রিং এর	স্প্রিং এর	গড়
সংখ্যা	আদিপাঠ	ধারকে ভর	পর সূচকের	প্রসারণ	প্রসারণ	স্প্রিং ধ্রুবক	বিভব শক্তি	বিভব
· ·	×	е 9	পাঠ					শক্তি
8	l_1	m	l_2	$x = l_2 - l_1$	x	$k = \frac{mg}{x}$	$U = \frac{1}{2} kx^2$	U
	cm	kg	cm	cm	m	N m ⁻¹	J	J
1.		m_1					5.	
2.		<i>m</i> ₂						
3.		m_3						
4.		m_4						
5.		m_5						

স্প্রিং-এর বিভব শক্তি নির্ণয়ের ছক

হিসাব :
$$k = \frac{mg}{r}$$
N m⁻¹

$$U = \frac{1}{2}kx^2$$
J

ফলাফল :

ম্প্রিং-এর সম্প্রসারণকে X-অক্ষে এবং আনুষঙ্গিক বিভব শক্তিকে Y-অক্ষে স্থাপন করে লেখচিত্র আঁকলে মূলবিন্দুগামী পরাবৃত্ত (parabola) পাওয়া যায়। (চিত্র : ৫.১১)। লেখচিত্র থেকে স্প্রিং-এর যে কোনো সম্প্রসারণের জন্য বিভব শক্তি নির্ণয় করা যায়।

সতর্কতা

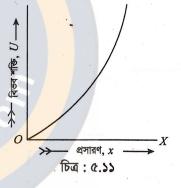
১। স্প্রিং-কে মুক্তভাবে ঝুলাতে হবে।

২। খেয়াল রাখতে হবে যে সূচকটি স্কেলকে স্পর্শ না করে।

৩। যে ওজন চাপানো হবে সেটি যেন স্প্রিং-এর স্থিতিস্থাপক সীমা অতিক্রম করে না যায়।

৪। ভর চাপানোর আগে ও পরে স্প্রিং-এর সাম্যাবস্থান সতর্কতার সাথে নির্ণয় করতে হবে।

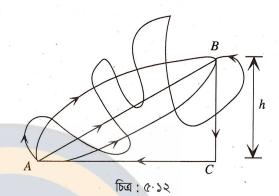
৫.১৩। সংরক্ষণশীল বল ও অসংরক্ষণশীল বল


Conservative Force & Nonconservative Force

বলকে আমরা দু'ভাবে ভাগ করতে পারি— সংরক্ষণশীল বল এবং অসংরক্ষণশীল বল।

সংরক্ষণশীল বল

সংজ্ঞা : কোনো কণা একটি পূর্ণ চক্র সম্পন্ন করে তার আদি অবস্থানে ফিরে আসলে কণাটির উপর যে বল দ্বারা সম্পাদিত কাজের পরিমাণ শূন্য হয়, সেই বলকে সংরক্ষণশীল বল বলে।


ব্যাখ্যা : কোনো কণার একটি বিন্দু থেকে অপর বিন্দুতে যাওয়ার সময় কোনো বল দ্বারা কৃতকাজ যদি ধনাত্মক হয় এবং দ্বিতীয় বিন্দু থেকে প্রথম বিন্দুতে আসার সময় যদি ঐ বল দ্বারা কৃতকাজ পূর্বের কাজের সমান ও ঋণাত্মক হয়, তাহলে এ পূর্ণ চক্রে মোট কাজ শূন্য হয়। এই বলকে সংরক্ষণশীল বল বলা হয়।

পদার্থবিজ্ঞান-প্রথম পত্র

কোনো একটি কণার এক বিন্দু থেকে অপর বিন্দুতে যাওয়ার সময় যদি কোনো বল দ্বারা কণাটির উপর সম্পাদিত কাজের পরিমাণ কণাটির গতিপথের উপর নির্ভর না করে কেবল বিন্দু দুটির অবস্থানের উপর নির্ভর করে তাহলে সেই বলটি সংরক্ষণশীল হয়।

সংরক্ষণশীল বলের উদাহরণ : অভিকর্ষ বল অভিকর্ষ বল একটি সংরক্ষণশীল বল। আমরা যদি একটি বস্তুকে অভিকর্ষের বিরুদ্ধে খাড়া উপরের দিকে নিক্ষেপ করি, তবে এটি পুনরায় আমাদের হাতে ফিরে আসবে। এ ক্ষেত্রে বস্তুটির হাত থেকে নিক্ষিপ্ত হয়ে পুনরায় হাতে ফিরে আসা এই পূর্ণ চক্রে কণাটির উপর অভিকর্ষ বলের সম্পাদিত কাজের পরিমাণ শূন্য। m ভরের একটি বস্তুকে ভূপৃষ্ঠের A বিন্দু থেকে h উচ্চতায় B বিন্দুতে ওঠালে অভিকর্ষ বলের বিরুদ্ধে কৃতকাজ mgh হয়। বস্তুটিকে যে পথেই (চিত্র : ৫-১২) ওঠানো হোক না কেন সকল ক্ষেত্রেই এই কাজের মান হয়

mgh। অতএব অভিকর্ষ বল দ্বারা সম্পন্ন কাজের পরিমাণ কেবল বিন্দু দুটির অবস্থানের উপর নির্ভরশীল, কণাটির গতি পথের উপর নয়। তাই অভিকর্ষ বল একটি সংরক্ষণশীল বল। তড়িৎ বল, চৌম্বক বল, একটি আদর্শ স্প্রিং-এর বল প্রভৃতি সংরক্ষণশীল বল।

অসংরক্ষণশীল বল

সংজ্ঞা : কোনো কণা এ<mark>কটি</mark> পূর্ণ চক্র সম্পন্ন করে তার আদি অবস্থানে ফিরে <mark>আসলে</mark> কণাটির উপর যে বল দ্বারা সম্পাদিত কাজের পরিমাণ শূ<mark>ন্য হ</mark>য় না, সেই বলকে অসংরক্ষণশীল বল বলে।

ব্যাখ্যা : কোনো কণার এক বিন্দু থেকে অপর বিন্দুতে যাওয়ার সময় কোনো বল দ্বারা কিছু কাজ সাধিত হয়। এখন ঐ কণাটির যদি দ্বিতীয় বিন্দু থেকে প্রথম বিন্দুতে ফিরে আসার সময় কৃতকাজ পূর্বের কাজের সমান ও বিপরীত না হয়, তাহলে পূর্ণচক্রে মোট কাজের পরিমাণ শূন্য হয় না। যে বলের ক্রিয়ায় এরপ ঘটে তাকে অসংরক্ষণশীল বল বলা হয়। যদি কোনো কণার এক বিন্দু থেকে অপর বিন্দুতে যাওয়ার সময় কোনো বল কর্তৃক কণাটির উপর সম্পাদিত কাজের পরিমাণ কণাটির গতিপথের উপর নির্ভর করে, তাহলে সেই বলটি অসংরক্ষণশীল বল হয়।

অসংরক্ষণশীল বলের উদাহরণ : ঘর্ষণ বল

ঘর্ষণ বল একটি অসংরক্ষণশীল বল। আমরা জানি, ঘর্ষণ বল সর্বদা গতির বিরুদ্ধে ক্রিয়া করে। তাই একটি পূর্ণ চক্রের প্রতিটি অংশে ঘর্ষণ বল দ্বারা কৃতকাজ ঋণাত্মক। ফলে একটি পূর্ণ চক্রে ঘর্ষণ বল দ্বারা সম্পাদিত কাজের পরিমাণ কখনো শূন্য হতে পারে না। আবার ঘর্ষণ বলের ক্ষেত্রে দুটি নির্দিষ্ট বিন্দুর মধ্যে সম্পন্ন কাজের পরিমাণ কণাটির গতিপথের উপর নির্ভর করে। কেননা একটি অমসৃণ টেবিলের উপরে যে কোনো দুটি বিন্দুর সংযোগকারী ভিন্ন ভিন্ন পথে একটি বস্তুকে ঠেলে নিয়ে গেলে অতিক্রান্ত দূরত্বের পরিবর্তন হয় এবং তার ফলে ঘর্ষণ বল দ্বারা সম্পন্ন কাজের পরিমাণও পরিবর্তিত হয়। এ মান পথের উপর নির্ভর করে। তাই ঘর্ষণ বল একটি অসংরক্ষণশীল বল।

এছাড়াও সান্দ্রবল, সবল ও দুর্বল নিউক্লিয় বল ইত্যাদি বলও অসংরক্ষণশীল বল।

৫.১৪। শক্তির নিত্যতা সূত্র বা সংরক্ষণশীলতা নীতি

Principle of Conservation of Energy

বিবৃতি : শক্তির সৃষ্টি বা বিনাশ নেই, শক্তি কেবল একরপ থেকে অপর এক বা একাধিক রূপে পরিবর্তিত হতে পারে। মহাবিশ্বের মোট শক্তির পরিমাণ নির্দিষ্ট ও অপরিবর্তনীয়।

কাজ, শক্তি ও ক্ষমতা

ব্যাখ্যা : এক প্রকার শক্তিকে অন্য এক বা একাধিক প্রকার শক্তিতে রূপান্তর সম্ভব। শক্তি যখন একরপ থেকে অন্যরূপে পরিবর্তিত হয় তখন শক্তির কোনো ক্ষয় হয় না। এক বস্তু যে পরিমাণ শক্তি হারায় অপর বস্তু ঠিক সে পরিমাণ শক্তি লাভ করে। প্রকৃতপক্ষে আমরা কোনো নতুন শক্তি সৃষ্টি করতে পারি না বা শক্তি ধ্বংস করতেও পারি না। অর্থাৎ বিশ্বের সামগ্রিক শক্তি ভাণ্ডারের কোনো তারতম্য ঘটে না। এ বিশ্ব সৃষ্টির প্রথম মুহূর্তে যে পরিমাণ শক্তি ছিল আজও সেই পরিমাণ শক্তি বর্ত্তমান। এটাই শক্তির অবিনশ্বরতা বা শক্তির সংরক্ষণশীলতা।

যান্ত্রিক শক্তির নিত্যতা বা সংরক্ষণশীলতা

বিবৃতি : কোনো ব্যবস্থায় কেবল সংরক্ষণশীল বল ক্রিয়া করলে ব্যবস্থার গতিশক্তি ও বিভব শক্তির সমষ্টি সর্বদা ধ্রুব থাকে। অর্থাৎ

গতিশক্তি + বিভব শক্তি = ধ্রুবক

ব্যাখ্যা : কোনো একটি ব্যবস্থায় যদি সংরক্ষণশীল বল ক্রিয়া করে, তবে সেই ব্যবস্থার যান্ত্রিক শক্তি সংরক্ষিত থাকে। সে ক্ষেত্রে ব্যবস্থার গতিশক্তি ও বিভব শক্তির সমষ্টি অর্থাৎ যান্ত্রিক শক্তি ধ্রুব থাকে। যদি ব্যবস্থার গতিশক্তি হ্রাস পায়, তবে বিভব শক্তি বৃদ্ধি পায় আর যদি বিভব শক্তি হ্রাস পায় তবে গতিশক্তি বৃদ্ধি পায়। কিন্তু তাদের সমষ্টির কোনো পরিবর্তন হয় না। ধরা যাক, কোনো ব্যবস্থার আদি বিভব শক্তি *U*_i এবং আদি গতিশক্তি *K*_i। ব্যবস্থার উপর সংরক্ষণশীল বল ক্রিয়া করায় ব্যবস্থার শেষে বিভব শক্তি ও গতিশক্তি হলো যথাক্রমে *U*_f এবং *K*_f। এখন যান্ত্রিক শক্তির সংরক্ষণশীলতা নীতি অনুসারে,

$$U_i + K_i = U_f + K_f \qquad \dots \qquad (5.26)$$

অর্থাৎ U + K = ধ্রুবক

অসংরক্ষণশীল বলের ক্ষেত্রে যে<mark>মন য</mark>দি কোনো ব্যবস্থায় ঘর্ষণ বল ক্রিয়া করে তখন (5.26) সমীকরণ খাটে না, অর্থাৎ যান্ত্রিক শক্তি ধ্রুব থাকে না।

৫.১৫। শক্তির নিত্যতার <mark>নীতি</mark>র ব্যবহার

Uses of Principle of Conservation of Energy

ক. উৎক্ষিপ্ত বস্তুর সর্বোচ্চ উচ্চতা

একটি বস্তুকে যখন খাড়া উপরের দিকে নিক্ষেপ করা হয় তখন শক্তির নিত্যতার <mark>নীতি</mark> অনুসারে সবসময় তার মোট যান্ত্রিক শক্তি অর্থাৎ বিভব শক্তি ও গতিশক্তির স<mark>মষ্টি ধ্রুব</mark> থাকে। ধরা যাক, *m* ভরের একটি বস্তুকে অভিকর্ষ বলের বিপরীতে খাড়া উপরের দিকে v_a বেগে নিক্ষেপ করা হলো।

নিক্ষেপের মুহূর্তে, বস্তুটি ভূ-পৃষ্ঠে থাকে, ফলে উচ্চতা h = 0।

সুতরাং নিক্ষেপের সময়

বিভব শক্তি $U_1 = mgh = 0$

গতিশক্তি
$$K_1 = \frac{1}{2} m v_0^2$$

:. মোট যান্ত্রিক শক্তি, $E_1 = U_1 + K_1 = 0 + \frac{1}{2}mv_o^2 = \frac{1}{2}mv_o^2$

বস্তুটি যত উপরে উঠতে থাকে, তার বেগ ততো কমতে থাকবে। কমতে কমতে বেগ শূন্য হলে সেটি আবার অভিকর্ষ বলের প্রভাবে নিচে নামতে থাকবে। সুতরাং সর্বোচ্চ উচ্চতায় v = 0। ধরা যাক, এ সর্বোচ্চ উচ্চতা h_{max} ।

সুতরাং সর্বোচ্চ উচ্চতায়

বিভব শক্তি, $U_2 = mgh_{max}$ গতিশক্তি, $K_2 = \frac{1}{2}mv^2 = 0$ \therefore মোট শক্তি, $E_2 = U_2 + K_2 = mgh_{max} + 0 = mgh_{max}$ এখন শক্তির নিত্যতার নীতি অনুসারে,

$$E_2 = E_1$$

$$\therefore mgh_{max} = \frac{1}{2}mv_o^2$$

$$\therefore h_{max} = \frac{v_o^2}{2g}$$
....
(5.27)

এ সমীকরণই আমরা তৃতীয় অধ্যায়ে গতির সমীকরণ থেকে পেয়েছি (3.20)।

খ. সরল ছন্দিত গতি বা সরল দোলন গতির শক্তি

যদি কোনো বস্তুর উপর ক্রিয়াশীল বল একটি নির্দিষ্ট বিন্দু থেকে এর সরণের সমানুপাতিক এবং সর্বদা ঐ বিন্দু অভিমুখী হয়, তাহলে বস্তুর এই গতিকে সরল দোলন গতি বলে।

এই নির্দিষ্ট বিন্দুকে সাম্যাবস্থান বা মধ্যাবস্থান বলে এবং সাম্যাবস্থান থেকে যেকোনো একদিকে যে সর্বোচ্চ দূরত্ব অতিক্রম করে তাকে বিস্তার (A) বলে।

৫.১৩ চিত্রে, O হচ্ছে সাম্যাবস্থান এবং OB = OC = A = বিস্তার ।

চিত্র : ৫.১৩

কম্পমান সুরশলাকার গতি, কোনো স্প্রিং-এর একপ্রান্ত দৃঢ় অবস্থানে আটকে অপর <mark>প্রান্তে</mark> ঝুলানো কোনো বস্তুকে দোলতে দিলে তার গতি সরল দোলন গ<mark>তি।</mark>

কোনো কণার উপর ক্রিয়া<mark>শীল</mark> বল F এবং সরণ x হলে সরল দোলন গতির ক্ষেত্রে F=-kx

এখানে k একটি ধ্রবক, তাকে বলা হয় বল ধ্রুবক। সরল দোলন গতি সম্পন্ন কোনো কণার সাম্যাবস্থান থেকে x দূরত্বে বিভব শক্তি $\frac{1}{2}kx^2$ এবং কোনো কণার বেগ v হলে তার গতিশক্তি $\frac{1}{2}mv^2$ ।

সরল দোলন গতিসম্পন্ন কোনো কণার দোলনের যে কোনো এক প্রান্তে যেমন C তে বেগ, v = 0 এবং সরণ, x = A ।

সুতরাং বিভব শক্তি, $U_1 = \frac{1}{2}kx^2 = \frac{1}{2}kA^2$

গতিশক্তি,
$$K_1 = \frac{1}{2}mv^2 = 0$$

:. মোট যান্ত্রিক শক্তি, $E_1 = U_1 + K_1 = \frac{1}{2}kA^2 + 0 = \frac{1}{2}kA^2$ সাম্যাবস্থান থেকে যেকোনো দূরত্ব x-এ অবস্থিত D বিন্দুতে যদি বেগ v হয়,

তাহলে বিভব শক্তি,
$$U_2 = \frac{1}{2} kx^2$$

গতিশক্তি,
$$K_2 = \frac{1}{2}mv^2$$

∴ মোট যান্ত্রিক শক্তি $E_2 = \frac{1}{2} kx^2 + \frac{1}{2} mv^2$ এখন শক্তির নিত্যতার নীতি অনুসারে *D* এবং *C* বিন্দুতে মোট শক্তি সমান। ∴ $E_2 = E_1$

$$\frac{1}{2}kx^2 + \frac{1}{2}mv^2 = \frac{1}{2}kA^2$$

এর থেকে আমরা x দূরত্বে যেকোনো বিন্দুতে বেগ v নির্ণয় করতে পারি,

$$\frac{1}{2}mv^{2} = \frac{1}{2}kA^{2} - \frac{1}{2}kx^{2}$$

$$\exists 1, \quad \frac{1}{2}mv^{2} = \frac{1}{2}k(A^{2} - x^{2})$$

বা,
$$v^2 = \frac{k}{m} (A^2 - x^2)$$

.....

$$\mathbf{v} = \sqrt{\frac{n}{m} \left(A^2 - x^2\right)}$$

সরল দোলন গতির ক্ষেত্রে $\sqrt{rac{k}{m}}=\omega=$ কৌণিক কম্পাষ্ণ।

$$v = \omega \sqrt{A^2 - x^2}$$

যা অষ্টম অধ্যায়ে প্রতিপাদিত (8.12) সমীকরণে<mark>র সাথে সংগতিপূর্ণ।</mark>

গ. সরল দোলকের ক্ষেত্রে যান্ত্রিক শক্তির নিত্যতা

সরল দোলকের আন্দোলনে গতি শক্তি ও বিভব শক্তির রূপান্তর প্রতিনিয়ত ঘটে। আন্দোলনের প্রতি মুহূর্তে গতি শক্তি ও বিভব শক্তির যোগফল সমান থাকে।

ধরা যাক, OA একটি দোলক এবং B বিন্দু আন্দোলনের ফলে সাম্যাবস্থান থেকে দোলকের সর্বাধিক সরণের অবস্থান, অর্থাৎ B বিন্দুতে দোলকটি মুহূর্তের জন্য থেমে যায় (চিত্র : $c \cdot 38$)। সুতরাং B বিন্দুতে দোলকের শক্তি সম্পূর্ণরূপে বিভব শক্তি। এখন দোলকের A বিন্দু থেকে Bবিন্দুতে যাওয়ার অর্থ খাড়াভাবে A থেকে N বিন্দুতে যাওয়া। সুতরাং Bবিন্দুতে দোলকের বিভব শক্তি = $mg \times$ খাড়া উচ্চতা = $mg \times AN$ ।

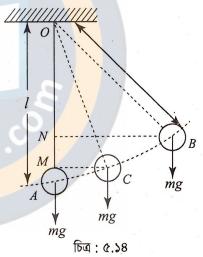
এখানে *m* ববের ভর এবং *B* বিন্দুত<mark>ে দোল</mark>কের গতিশক্তি = 0। অতএব, *B* বিন্দুতে দোলকের

মোট যান্ত্রিক শক্তি = $mg \times AN + 0 = mg \times AN$

ধরা যাক, আন্দোলিত হয়ে দোলকটি কোনো এক সময় *C* বিন্দুতে পৌছল। এ অবস্থানে দোলকটির বিভব শক্তি ও গতি শক্তি দুই-ই থাকবে।

C বিন্দুতে দোলকের বিভব শক্তি = mg × খাড়া উচ্চতা

$$= mg \times AM$$


$$C$$
 বিন্দুতে দোলকের গতি শক্তি = $\frac{1}{2}mv^2 = \frac{1}{2}m \times 2gh = mg \times NM = mg (AN - AM)$
অতএব, C বিন্দুতে দোলকের মোট শক্তি = $mg \times AM + mg (AN - AM)$

সুতরাং আন্দোলিত দোলক শক্তির নিত্যতা সূত্র মেনে চলে।

৫.১৬। ক্ষমতা

Power

সংজ্ঞা : কাজ সম্পাদনকারী কোনো ব্যক্তি বা যন্ত্রের কাজ করার হার বা শক্তি সরবরাহের হারকে ক্ষমতা বলে। ব্যাখ্যা : t সময়ে W পরিমাণ কাজ সম্পাদিত হলে ক্ষমতা,

(5.28)

(5.29)

$$P = \frac{W}{t} \qquad \dots \qquad \dots \qquad (5.30)$$
$$= \frac{\overline{q \circ o \circ log}}{\overline{7} \mathrm{NI} \mathrm{I}}$$

কাজ করার এ হার সবসময় সমান না হলে (5.30) এই সমীকরণ দিয়ে গড় ক্ষমতা পাওয়া যায়।

তাৎক্ষণিক ক্ষমতা হবে
$$P=rac{dW}{dt}$$

ক্ষমতা, বল ও বেগের সম্পর্ক

ক্ষমতা

ু যেহেতু W = FS, তাই (5.30) সমীকরণ থেকে প্রাই, $P = \frac{FS}{t}$

$$\therefore \frac{S}{t} = v$$
$$\therefore P - F$$

(5.31) এ সমীকরণ থেকে দেখা যায় যে, কোনো যন্ত্র যদি F বল প্রয়োগে বলের প্রয়োগ বিন্দুকে v বেগে গতিশীল রেখে কাজ সম্পাদন করে তাহলে তার ক্ষমতা হবে বল ও বেগের গুণফলের সমান।

(5.31)

যেহেতু কাজ একটি স্কেলার রাশি, <mark>তাই ক্ষমতা</mark>ও একটি স্কেলার রাশি।

ক্ষমতার মাত্রা ও একক : ক্ষ<mark>মতা</mark>র মাত্রা হবে <mark>কাজ</mark> সময় এর মাত্রা অর্থাৎ ML²T⁻³

ক্ষমতার একক হবে সময় এর একক। ক্ষমতার এসআই একক হচ্ছে ওয়াট (W)।

যদি কাজ W = 1 J এব<mark>ং সম</mark>য় t = 1 s হয়, তাহলে P = 1 W হবে।

ওয়াট : 1 সেকেন্ডে 1 জুল (J) কাজ করার ক্ষমতাকে 1 ওয়াট (W) বলে।

 $\therefore 1 \text{ W} = 1 \text{ J s}^{-1}$

1 কিলোওয়াট (kW) = 1000 ওয়াট (W)

1 মেগাওয়াট (MW) = 1000 কিলোওয়াট (kW) = 10^6 W = 10^6 J s⁻¹

তাৎপর্য : কোনো বিদ্যুৎ উৎ<mark>পাদন কেন্দ্রে</mark>র ক্ষমতা 80 MW বা 80 × 10⁶ W বলতে বোঝায় উক্ত কেন্দ্রের সরবরাহকৃত বিদ্যুৎশক্তি দিয়ে প্রতি সেকেন্ডে 80 × 10⁶ J কাজ করা যায়।

অশ্বক্ষমতা (Horse Power : hp) : এককের আন্তর্জাতিক পদ্ধতি চালুর পূর্বে ক্ষমতার একটি ব্যবহারিক একক ছিল অশ্বক্ষমতা (hp)। ওয়াটের সাথে এর সম্পর্ক হলো,

1 hp = 746 watt

৫.১৭। কর্মদক্ষতা

Efficiency

শক্তি রপান্তরের সহায়তায় আমরা আমাদের দৈনন্দিন জীবনের প্রয়োজন মেটাই। যেমন, পেট্রোলে সঞ্চিত রাসায়নিক শক্তি গতি শক্তিতে রূপান্তরের মাধ্যমে আমরা ইঞ্জিন চালাতে পারি। কিন্তু একটা নির্দিষ্ট পরিমাণ পেট্রোল পুড়িয়ে আমরা যে গতি শক্তি পেতে পারি তার সবটাই কিন্তু ইঞ্জিনে দেখা যাবে না। এর কারণ শক্তির কিছু অংশ অন্যভাবে ব্যয়িত হয়। ইঞ্জিনে যতটুকু শক্তি পাওয়া যায় তাকে কার্যকর শক্তি বলে। কোনো যন্ত্রের বা সিস্টেমের কর্মদক্ষতা বলতে এ যন্ত্র বা সিস্টেম থেকে মোট যে কার্যকর শক্তি পাওয়া যায় এবং যন্ত্রে বা সিস্টেমে মোট যে শক্তি দেওয়া হয়, তার অনুপাতকে বোঝায়।

সংজ্ঞা : কোনো ব্যবস্থা (system) বা যন্ত্র থেকে প্রাপ্ত মোট কার্যকর শক্তি এবং ব্যবস্থায় বা যন্ত্রে প্রদত্ত মোট শক্তির অনুপাতকে এ ব্যবস্থার বা যন্ত্রের কর্মদক্ষতা বলে।

কর্মদক্ষতা, $\eta = \frac{$ মোট কার্যকর শক্তি (output)}{মোট প্রদত্ত শক্তি (input)} ... (5.32)

কর্মদক্ষতাকে সাধারণত শতকরা হিসাবে প্রকাশ করা হয়ে থাকে।

কোনো প্রক্রিয়ায় মোট প্রদন্ত শক্তি E_{in} -এর একটি অংশ কার্যকর শক্তি u-তে রূপান্তরিত হয় এবং বাকি শক্তি W অপচয় হলে, $E_{in} - W = u$ ।

সুতরাং কর্মদক্ষতা,
$$\eta = \frac{u}{E_{in}} \times 100\%$$
 ... (5.33)

কোনো যন্ত্রের কর্মদক্ষতা 70% বলতে আমরা বুঝি যে, যদি এই যন্ত্রে 100 J শক্তি দেওয়া হয়, তাহলে সেই যন্ত্র থেকে প্রাপ্ত মোট কার্যকর শক্তি হবে 70 J।

শক্তির পরিবর্তে অনেক সময় শক্তির হার তথা ক্ষমতা দিয়ে কর্মদক্ষতাকে সংজ্ঞায়িত করা হয়। কার্যকর ক্ষমতা এবং মোট ক্ষমতার অনুপাতকে কর্মদক্ষতা বলে।

সমস্যা সমাধানে প্রয়োজনীয় সমীকরণসমূহ

সমীকরণ

। = কার্যকর ক্ষমতা মোট ক্ষমতা

সমীকরণ নং

ক্রমিক নং

(5.34)

অনুচ্ছেদ

6.2 2 5.2 $W = FS \cos \theta$ $W = \frac{1}{2} kx^2$ 3.9 2 5.12 $W_s = \frac{1}{2} k x_i^2 - \frac{1}{2} k x_f^2$ 0 3.9 5.13 $W_s = -\frac{1}{2}kx^2$ 0.0 8 5.14 $W = \frac{GMmh}{R(R+h)}$ 0.3 C. 5.17 $W_{ab} = GMm \left(\frac{1}{r_b} - \frac{1}{r_a}\right)$ 5 5.20 6.5 $K = \frac{1}{2} m v^2$ 06.30 ٩ 5.21 $K = \frac{p^2}{2m}$ 06.30 b 5.22 $W = K - K_{\circ} = \Delta K$ 0.30 3 5.23 6.33 5.24 U = mgh20 $U = \frac{1}{2} kx^2$ 6.33 22 5.25 $\frac{K_l + U_l = K_f + U_f}{P = \frac{W}{t}}$ 0.38 22 5.26 20 6.35 5.30 28 6.35 5.31 P = Fv

পদার্থবিজ্ঞান-প্রথম পত্র

সার-সংক্ষেপ

কাজ : বল ও বলের দিকে সরণের উপাংশের গুণফলকে কাজ বলে।

ধ্রুব বল দ্বারা কৃতকাজ : $W = \overrightarrow{F} \cdot \overrightarrow{S}$

বলের দ্বারা কাজ বা ধনাত্মক কাজ : যদি বল প্রয়োগের ফলে বলের প্রয়োগ বিন্দু বলের দিকে সরে যায় বা বলের দিকে সরণের উপাংশ থাকে তাহলে সেই বল ও বলের দিকে সরণের উপাংশের গুণফলকে বলের দ্বারা কাজ বা ধনাত্মক কাজ বলে।

বলের বিরুদ্ধে কাজ বা ঋণাত্মক কাজ : যদি বল প্রয়োগের ফলে বলের প্রয়োগ বিন্দু বলের বিপরীত দিকে সরে যায় বা বলের বিপরীত দিকে সরণের উপাংশ থাকে তাহলে সেই বল এবং বলের বিপরীত দিকে সরণের উপাংশের গুণফলকে বলের বিরুদ্ধে কাজ বলে।

শক্তি : কোনো বস্তুর কাজ করার সামর্থ্যকে শক্তি বলে।

যান্ত্রিক শক্তি : কোনো বস্তুর মধ্যে তার গতি, অবস্থান বা ভৌত অবস্থার জন্য কাজ করার যে সামর্থ্য তথা শক্তি থাকে তাকে যান্ত্রিক শক্তি বলে।

গতিশক্তি : কোনো গতিশীল বস্তু গতিশীল থাকার জন্য কাজ করার যে সামর্থ্য অর্থাৎ শক্তি অর্জন করে তাকে গতিশক্তি বলে। গতি শক্তি $K = \frac{1}{2} mv^2$

বিভবশক্তি : স্বাভাবিক অবস্থা বা অবস্থান পরিবর্তন করে কোনো বস্তুকে অন্য কো<mark>নো অ</mark>বস্থা বা অবস্থানে আনলে বস্তু কাজ করার যে সামর্থ্য অর্জন করে তাকে বিভব শক্তি বলে।

সংরক্ষণশীল বল : কোনো কণা একটি পূর্ণ চক্র সম্পন্ন করে তার আদি অবস্থানে ফিরে আসলে কণাটির উপর বল দ্বারা সম্পাদিত কাজের পরিমাণ শূন্<mark>য হলে</mark> সেই বলকে সংরক্ষণশীল বল বলে।

অসংরক্ষণশীল বল : এ<mark>কটি ব</mark>লকে অসংরক্ষণশীল বলা হয় যদি কোনো কণা এ<mark>কটি পূ</mark>র্ণ চক্র সম্পন্ন করে তার আদি অবস্থানে ফিরে আসলে কণাটির <mark>উপর</mark> এই বল দ্বারা সম্পাদিত কাজের পরিমাণ শূন্য না হ<mark>য়।</mark>

শক্তির নিত্যতার নীতি : শক্তির সৃষ্টি বা বিনাশ নেই, শক্তি কেবল একরূপ থেকে অপর এক বা ততোধিকরূপে পরিবর্তিত হতে পারে। মহাবিশ্বের মোট শক্তির পরিমাণ নির্দিষ্ট ও অপরিবর্তনীয়।

ক্ষমতা : কাজ সম্পাদনকারী কো<mark>নো ব্যক্তি বা য</mark>ন্ত্রের কাজ করার হার <mark>বা শক্তি সরব</mark>রাহের হারকে ক্ষমতা বলে।

কর্মদক্ষতা : কোনো যন্ত্র থেকে প্রাপ্ত মোট কার্যকর শক্তি এবং যন্ত্রে প্রদন্ত মোট শক্তির অনুপাতকে ঐ যন্ত্রের কর্মদক্ষতা বলে।

গাণিতিক উদাহরণ

সেট I

[সাধারণ সমস্যাবলি]

গাণিতিক উদাহরণ ৫.১। 2 N বল কোনো নির্দিষ্ট ভরেদিকের সাথে 60° কোণ উৎপন্ন করে 5 m দূরে সরে গেল। কাজের পরিমাণ নির্ণয় কর।

আমরা জানি,

 $W = FS \cos \theta$

- $= 2 \text{ N} \times 5 \text{ m} \times \cos 60^{\circ}$
- = 5 J

উ: 5 J

এখানে,

বল, F = 2 N সরণ, S = 5 m সরণ ও বলের অন্তর্ভুক্ত কোণ, $\theta = 60^{\circ}$ কাজ, W = ?

গাণিতিক উদাহরণ ৫.২। একটি কণার উপর $\vec{F} = (12\hat{i} - 6\hat{j} + 4\hat{k})$ N বল প্রয়োগ করলে কণাটির $\vec{r} = (4\hat{i} + 4\hat{j} - 2\hat{k})$ m সরণ হয়। বল কর্তৃক সম্পাদিত কাজের পরিমাণ নির্ণয় কর।

 $W = \vec{F} \cdot \vec{r}$ $= (12\hat{1} - 6\hat{j} + 4\hat{k}) N \cdot (4\hat{1} + 4\hat{j} - 2\hat{k}) m$ $= 12 N \times 4 m + (-6 N) \times 4 m + 4 N \times (-2 m)$ = 48 J - 24 J - 8 J = 16 J $\vec{F} = (12\hat{1} - 6\hat{j} + 4\hat{k}) N$ $\forall \vec{R} = (12\hat{1} - 6\hat{j} + 4\hat{k}) N$ $\forall \vec{R} = (12\hat{1} - 6\hat{j} + 4\hat{k}) N$

উ: 16 J

গাণিতিক উদাহরণ ৫.৩। কোনো মসৃণ, অনুভূমিক তলের উপর অবস্থিত একটি ব্লককে 80 Nm⁻¹ বল ধ্রুবকের একটি স্প্রিং-এর সাথে সংযুক্ত করা হলো। সাম্যাবস্থা থেকে স্প্রিংটিকে 3.0 cm সঙ্কুচিত করা হলো। স্থিং বলের বিপরীতে কত কাজ করা হলো ?

আমরা জানি,	এখানে,
$W = \frac{1}{2} kx^2$	বল ধ্রুবক, k = 80 N m ⁻¹
$=\frac{1}{2} \times 80 \text{ N m}^{-1} \times (3 \times 10^{-2} \text{ m})^2$	সরণ, x = 3 cm = 3 × 10 ⁻² m
$= 3.6 \times 10^{-2} \mathrm{J}$	কৃত কাজ, <i>W</i> = ?
উ: 3.6 × 10 ⁻² J	

গাণিতিক উদাহরণ $c_{1} = 100 \text{ kg}$ ভরের একটি বস্তুর ভরবেগ 200 kg m s^{-1} হলে এর গতিশক্তি বের কর। আমরা জানি, | এখানে,

 $K = \frac{p^2}{2m}$ $= \frac{(200 \text{ kg m s}^{-1})^2}{2 \times 100 \text{ kg}}$ ভর, m = 100 kgভরবেগ, $p = 200 \text{ kg m s}^{-1}$ গতিশক্তি, K = ?

গাণিতিক উদাহরণ ৫.৫। একটি নিউট্রনের ভর 1.67 × 10⁻²⁷ kg এবং এটি 4× 10⁴ m s⁻¹ বেগে গতিশীল। এর গতিশক্তি কত ?

ঠশীল। এর গতিশক্তি কত ? আমরা জানি, গতিশক্তি, $K = \frac{1}{2}mv^2$ $= \frac{1}{2} \times 1.67 \times 10^{-27} \text{ kg} \times (4 \times 10^4 \text{ m s}^{-1})^2$ $= 13.36 \times 10^{-19} \text{ J}$ এখানে, নিউট্রনের ভর, $m = 1.67 \times 10^{-27} \text{ kg}$ নিউট্রনের বেগ, $v = 4 \times 10^4 \text{ m s}^{-1}$ গতিশক্তি, K = ?

উ: 13.36 × 10⁻¹⁹ J

গাণিতিক উদাহরণ ৫.৬। একটি রাইফেলের গুলি একটি তক্তাকে কেবল ভেদ করতে পারে। যদি গুলির বেগ পাঁচণ্ডণ করা হয় তবে অনুরূপ কয়টি তক্তা ভেদ করতে পারবে ?

মনে করি, গুলির ভর, m এবং গুলির বেগ, v

∴ একটি তক্তা ভেদ করতে প্রয়োজনীয় গতিশক্তি, K₁

$$\therefore K_1 = \frac{1}{2}mv^2$$

বেগ পাঁচণ্ডণ করা হলে ধরা যাক, গতিশক্তি, K_2 হবে,

 $\therefore K_2 = \frac{1}{2}m (5v)^2 = \frac{1}{2}m \times 25v^2 = 25 \times \frac{1}{2}mv^2 = 25 \times K_1 = 25 \times 4$ একটি তক্তা ভেদ করার জন্য প্রয়োজনীয় গতিশক্তি।

...বেগ পাঁচগুণ হলে গুলিটি অনুরূপ 25 টি তক্তা ভেদ করতে পারবে।

উ: 25 টি।

গাণিতিক উদাহরণ ৫.৭। 5 kg ভরের কোনো বস্তুকে কত উঁচু থেকে ফেললে এর গতিশক্তি 27 km h⁻¹ বেগে চলমান 2000 kg লরীর গতিশক্তির সমান হবে ?

এখানে.

লরীর ভর, M = 2000 kg

লরীর বেগ, $v = 27 \text{ km } \text{h}^{-1}$

বস্তুর ভর, *m* = 5 kg

উচ্চতা, *h* = ?

 $=\frac{27 \times 10^3 \text{ m}}{3600 \text{ s}} = 7.5 \text{ m s}^{-1}$

বস্তুর গতিশক্তি = সম্পন্ন কাজ

 $K_1 = mgh$

 $= 5 \text{ kg} \times 9.8 \text{ m s}^{-2} \times h$

লরীর গতিশক্তি,

 $K_2 = \frac{1}{2}Mv^2$

 $=\frac{1}{2} \times 2000 \text{ kg} \times (7.5 \text{ m s}^{-1})^2$

এখন প্রশ্নানুসারে, বস্তুর গতিশক্তি = লরীর গতিশক্তি

$$K_1 = K_2$$

5 kg × 9.8 m s⁻² × $h = \frac{1}{2} \times 2000$ kg × (7.5 m s⁻¹)²

 $\therefore h = 1147.96 \text{ m}$

উ: 1147.96 m

গাণিতিক উদাহরণ ৫.৮। 0.50 kg ভরের একটি বোমা ভূমি হতে 1 km উঁচুতে অবস্থিত একটি বিমান থেকে ফেলে দেওয়া হলো। ভূমি স্পর্শ করার পূর্ব মুহূর্তে এর গতিশক্তি বের কর।

আমরা জানি, ভূমি স্পর্শ করার পূর্ব মুহূর্তে বেগ v হলে, $K = \frac{1}{2} mv^2$ কিন্তু $v^2 = v_o^2 + 2 as$ এখানে, আদিবেগ, $v_o = 0$ ত্বরণ, a = অভিকর্ষজ ত্বরণ, $g = 9.8 \text{ m s}^{-2}$ সরণ, s = উচ্চতা $h = 10^3 \text{ m}$

 $\therefore v^2 = 0 + 2 \times 9.8 \text{ m s}^{-2} \times 10^3 \text{ m}$

$$= 19600 \text{ m}^2 \text{ s}^{-2}$$

$$\therefore K = \frac{1}{2} \times 0.5 \text{ kg} \times 19600 \text{ m}^2 \text{ s}^{-2}$$

= 4900 J

উ: 4900 J.

গাণিতিক উদাহরণ ৫.৯। স্থিরাবস্থা থেকে 40 kg ভরবিশিষ্ট কোনো বস্তু নির্দিষ্ট বলের ক্রিয়ার ফলে 2 s পর $15\,{
m m~s^{-1}}$ বেগ অর্জন করে। এর উপর কী পরিমাণ বল কাজ করছে এবং $4\,{
m s}$ পর এর গতিশক্তি কত হবে ?

আমরা জানি, এখানে. F = maবস্তুর ভর, m = 40 kg আবার, $v = v_0 + at$ বস্তুর আদিবেগ, $v_0 = 0$ বা, 15 m s⁻¹ = 0 + $a \times 2$ s শেষ বেগ, v = 15 m s⁻¹ $\therefore a = \frac{15 \text{ m} \text{ s}^{-1}}{2 \text{ s}} = 7.5 \text{ m} \text{ s}^{-2}$ সময়, t = 2 s \therefore F = 40 kg × 7.5 m s⁻² তুরণ, a = ? = 300 Nবল, F = ?আবার, $v' = v_0 + at'$ দ্বিতীয় সময়, t' = 4 s $= 0 + 7.5 \text{ m s}^{-2} \times 4 \text{ s}^{-2}$ 4 s পরে বস্তুর বেগ, v' = ? $= 30 \text{ m s}^{-1}$ 4 s পরে বস্তুর গতিশক্তি, K=?

গতিশক্তি, $K = \frac{1}{2} mv'^2$

$$=\frac{1}{2} \times 40 \text{ kg} \times (30 \text{ m s}^{-1})^2 = 18000 \text{ J}$$

উ: 300 N: 18000 J

গাণিতিক উদাহরণ ৫.১০। 2 kg ভরের একটি বস্তুকে ভূমি থেকে খাড়া উর্ধ্বে <mark>নিক্ষেপ</mark> করা হলো এবং বস্তুটি 8 s পর পুনরায় ভূমিতে ফিরে এলো। <mark>নিক্ষে</mark>পের মুহূর্তে এবং নিক্ষেপের 2 s <mark>পরে ব</mark>স্তুটির বিভব শক্তি এবং গতিশক্তি কত ? [দেওয়া আছে, $g = 9.8~{
m m~s^{-2}}]$ [রুয়েট ২০০৯–২০১০]

আমরা জানি, নিক্ষেপের মুহুর্তে বস্তুর আদি বেগ এখানে. V. 200 বস্তুর ভর, m = 2 kg $T = \frac{2v_o}{g}$ উড্ডয়নকাল, T=8 s $g = 9.8 \text{ m s}^{-2}$ বা, $v_o = \frac{gT}{2}$ নিক্ষেপের সময় $=\frac{9.8 \text{ m s}^{-2} \times 8 \text{ s}}{2}$ বিভব শক্তি, $U_o = ?$ $= 39.2 \text{ m s}^{-1}$ গতিশক্তি, $K_o = ?$ নিক্ষেপের মুহূর্তে উচ্চতা, h=0সময়, t = 2 s পর সুতরাং বিভব শক্তি $U_o=mgh=0$ বিভব শক্তি, U=?গতিশক্তি, K = ? গতিশক্তি, $K_o = \frac{1}{2} m v_o^2$ $=\frac{1}{2} \times 2 \text{ kg} \times (39.2 \text{ m s}^{-1})^2$ = 1536.64 J

t = 2 s পর উচ্চতা h হলে $h = v_o t - \frac{1}{2} g t^2 = (39.2 \text{ m s}^{-1}) \times 2 \text{ s} - \frac{1}{2} \times 9.8 \text{ m s}^{-2} \times (2 \text{ s})^2$ = 58.8 m $\therefore U = mgh = 2 \text{ kg} \times 9.8 \text{ m s}^{-2} \times 58.8 \text{ m}$ = 1152.48 J t = 2 s পর বেগ v হলে $v = v_o - gt$ $= 39.2 \text{ m s}^{-1} - 9.8 \text{ m s}^{-2} \times 2 \text{ s}$ $= 19.6 \text{ m s}^{-1}$ $\therefore K = \frac{1}{2} mv^2 = \frac{1}{2} \times 2 \text{ kg} \times (19.6 \text{ m s}^{-1})^2$ = 384.16 J

উ: বিভব শক্তি 0 এব<mark>ং 1152</mark>.48 J; গতিশক্তি 1536.64 J এবং 384.16 J

গাণিতিক উদ্দাহরণ ৫.১১। 60 m উচ্চতা থেকে একটি বস্তুকে বিন<mark>া বাধায়</mark> পড়তে দিলে ভূমি হতে কত উচ্চতায় এর বিভব শক্তিগ<mark>তি শ</mark>ক্তির অর্ধেক হবে ? [চ. বো. ২০১৫]

মনে করি, বস্তুর ভর = m এবং বস্তুর মোট উচ্চতা, h = 60 m.

ধরা যাক, ভূমি থেকে 🗴 উচ্চতায় গতিশক্তি বিভব শক্তির দ্বিগুণ হবে। অর্থাৎ বিভব <mark>শক্তি গ</mark>তিশক্তির অর্ধেক হবে।

x উচ্চতায় বস্তুর বিভব শক্তি, U = mgx

∴ x উচ্চতায় বস্তুর গ**িশ**ক্তি K = 2U = 2 mgx

$$h$$
 উচ্চতায় মোট শক্তি তথা বিভব শক্তি $\ E=mg$

এখন শক্তির নিত্যতা সূত্রানুসারে 🗴 উচ্চতায়

K + U = E2 mgx + mgx = mgh बो, 3 x = h बो, x = $\frac{h}{3} = \frac{60 \text{ m}}{3} = 20 \text{ m}$

উ: 20 m

গাণিতিক উদাহরণ ৫.১২। 20 m উঁচু একটি দালানের ছাদ থেকে *m* ভরের একটি টেনিস বল গড়িয়ে মাটিতে পড়ে। বলটি যখন ভূমি স্পর্শ করে তখন এর বেগ 22 m s⁻¹। বলটি ছাদ ত্যাগ করার মুহূর্তে কত বেগে গড়াচ্ছিল ?

শক্তির সংরক্ষণশীলতা নীতি থেকে আমরা জানি,

$$K_{i} + U_{i} = K_{f} + U_{f}$$

$$\frac{1}{2} mv_{i}^{2} + mgh = \frac{1}{2}mv_{f}^{2} + 0$$

$$\overline{a}_{i}, \frac{1}{2}v_{i}^{2} + gh = \frac{1}{2}v_{f}^{2}$$

$$\overline{a}_{i}, \frac{1}{2}v_{i}^{2} + 9.8 \text{ m s}^{-2} \times 20 \text{ m} = \frac{1}{2} \times (22 \text{ m s}^{-1})^{2}$$

এখানে, ছাদের উচ্চতা, h = 20 mশেষ বেগ, $v_f = 22 \text{ m s}^{-1}$ অভিকর্ষজ ত্বরণ, $g = 9.8 \text{ m s}^{-2}$ আদি বেগ, $v_i = ?$

বা,
$$\frac{1}{2}v_i^2 + 196 \text{ m}^2 \text{ s}^{-2} = 242 \text{ m}^2 \text{ s}^{-2}$$

বা, $\frac{1}{2}v_i^2 = 46 \text{ m}^2 \text{ s}^{-2}$
∴ $v_i^2 = 92 \text{ m}^2 \text{ s}^{-2}$
 $v_i = 9.59 \text{ m s}^{-1}$

গাণিতিক উদাহরণ ৫.১৩। 74.6 kg ভরের একজন লোক প্রতিটি 25 cm উঁচু 20টি সিঁড়ি 10 s-এ উঠতে পারেন। তার ক্ষমতা কত ?

আমরা জানি, কৃতকাজ W হলে,	এখানে,
$P = \frac{W}{t} = \frac{FS}{t}$	লোকের ভর, $m = 74.6 \text{ kg}$
$=\frac{731.08 \text{ N} \times 5 \text{ m}}{10 \text{ s}}$	বল, <i>F</i> = লোকটির ওজন = <i>mg</i> = 74.6 kg× 9.8 m s ⁻² = 731.08 N সরণ, <i>S</i> = উচ্চতা = 20 × 25 cm = 500 cm = 5 m
P = 365.54 W	সময়, <i>t</i> = 10 s
উ: 365.54 W গাণিতিক উদাহরণ ৫. ১ ৪ ৷ 2 <mark>70 k</mark> g ভরের	ক্ষমতা, $P=?$ একটি বোঝা একটি ক্রেনের সাহায্যে $0.1~{ m m~s^{-1}}$ বেগে উঠাতে
হলে ক্রেনের ক্ষমতা কত ?	[কু. বো. ২০১০]
আমরা জানি,	এখানে,
P = Fv	বোঝার ভর, $m = 270 \text{ kg}$
= 2646 N × 0.1 m s ⁻¹ = 264.6 W	বল, F = বোঝার ওজন
	$= mg = 270 \text{ kg} \times 9.8 \text{ m s}^{-2}$
উ: 264.6 W	= 2646 N
	বেগ, $\nu = 0.1 \text{ m s}^{-1}$
	ক্ষমতা, $P = ?$
গাণিতিক উদাহরণ ৫ ১৫ ৷ একটি লিফটের ৫	Add ashire 0.75

গাণিতিক উদাহরণ ৫.১৫। একটি লিফ্টের কেবল্ লিফ্টিকে $0.75~{
m m~s^{-1}}$ সমদ্রুতিতে উপরে তুলতে পারে। কেবল্টি 23 kW ক্ষমতা প্রয়োগ করলে কেবল্-এর টান বের কর।

আমরা জানি,	এখানে,
P = Fv	বেগ, $v = 0.75 \text{ m s}^{-1}$
$F = \frac{P}{v} = \frac{23 \times 10^3 \text{ W}}{0.75 \text{ m s}^{-1}}$	ক্ষমতা, $P = 23$ kW = 23×10^3 W
$= 30.67 \times 10^3 \mathrm{N}$	বল বা টান, F = ?

উ: 30.67 × 10³ N

সেট II

[সাম্প্রতিক বোর্ড পরীক্ষা ও বিভিন্ন বিশ্ববিদ্যালয়ের ভর্তি পরীক্ষায় সন্নিবেশিত সমস্যাবলি]

গাণিতিক উদাহরণ ৫.১৬। একটি দালানের ছাদের সাথে লাগান 5 m লম্বা একটি মই অনুভূমিকের সাথে 30° কোণ করে আছে। 60 kg ভরের এক ব্যক্তি 20 kg ভরের বোঝা নিয়ে 10 সেকেন্ডে ছাদে ওঠেন। তার অশ্বক্ষমতা বের কর।
[রুয়েট ২০১১–২০১২; চুয়েট ২০০৮–২০০৯]

আমরা জানি,	এখানে,
$P = \frac{W}{t}$	বল, F = ব্যক্তির ওজন + বোঝার ওজন
কিন্তু কাজ, $W = FS \cos \theta$	= $(60 \text{ kg} + 20 \text{ kg}) \times 9.8 \text{ m s}^{-2}$
= 784 N \times 5 m \times cos 60°	= 784 N
$= 784 \text{ N} \times 5 \text{ m} \times \frac{1}{2}$	সরণ, <i>S</i> = 5 m
= 1960 J	বল ও সরণের অন্তর্ভুক্ত
$\therefore P = \frac{1960 \text{ J}}{10 \text{ s}}.$	কোণ, $ heta =$ মই ও উল্লম্বের অন্তর্ভুক্ত কোণ
= 196 W	$=90^{\circ}-30^{\circ}=60^{\circ}$
$=\frac{196}{746}$ hp	সময়, <i>t</i> = 10 s
= 0.26 hp	ক্ষমতা, P = ?
উ: 0.26 hp	

গাণিতিক উদাহরণ ৫.১৭। কোন কুয়া থেকে 20 m উপরে পানি <mark>তোলার</mark> জন্য 6 kW এর একটি পাম্প ব্যবহার করা হচ্ছে। পাম্পের দক্ষতা 88.2% হলে প্রতি মিনিটে কত লিটার পানি তোলা যাবে ? [ব. বো. ২০০৬]

আমরা জানি,	এখানে,
পাম্পের কার্যকর ক্ষমতা,	পাম্পের ক্ষমতা, $P' = 6 \text{ kW} = 6 \times 10^3 \text{ W}$
$P = \frac{88.2}{100} P'$	দক্ষতা, η = 88.2%
$=\frac{88.2}{100}\times 6\times 10^3$ W	সরণ, <i>h</i> = 20 m
= 5292 W	সময়, $t = 1 \min = 60 \mathrm{s}$
	পানির আয়তন, $V=~?$
· · · · · · · · · · · · · · · · · · ·	

আবার,

 $P = \frac{W}{t} = \frac{Fh}{t} = \frac{mgh}{t}$ $\therefore m = \frac{Pt}{gh} = \frac{5292 \text{ W} \times 60 \text{ s}}{9.8 \text{ m s}^{-2} \times 20 \text{ m}} = 1620 \text{ kg}$ যেহেতু 1 kg পানির আয়তন 1 litre \therefore পানির আয়তন, V = 1620 litre উ: 1620 litre গাণিতিক উদাহরণ ৫.১৮। একটি মোটর মিনিটে 5.5 × 10⁵ kg পানি 100 m উপরে ওঠাতে পারে। মোটরটির দক্ষতা 70% হলে এর ক্ষমতা নির্ণয় কর। [রা. বো. ২০০০]

আমরা জানি, কৃতকাজ W হলে, এখানে. কার্যকর ক্ষমতা. পানির ভর, $m = 5.5 \times 10^5 \text{ kg}$ $P = \frac{W}{t} = \frac{Fh}{t}$ সরণ, h = 100 m $=\frac{mgh}{t}$ সময়, $t = 1 \min = 60 \text{ s}$ $= \frac{5.5 \times 10^5 \text{ kg} \times 9.8 \text{ m s}^{-2} \times 100 \text{ m}}{5.5 \times 10^5 \text{ kg} \times 9.8 \text{ m}}$ পাম্পের ক্ষমতা, P'= ? 60 s পাম্পের কার্যকর ক্ষমতা, $= 8.98 \times 10^{6} \text{ W}$ P = P' and $70\% = \frac{70}{100}P' = 0.7P'$ আবার, 0.7 P' = Pবা, 0.7 $P' = 8.98 \times 10^6 \text{ W}$ অভিকর্ষজ তুরণ, g = 9.8 m s⁻² $P' = 1.28 \times 10^7 \text{ W}$

উ: 1.28 × 10⁷ W

গাণিতিক উদাহরণ ৫.১৯। একটি পানিপূর্ণ কুয়ার গভীরতা এবং ব্যাস যথা<u>ক্রমে 10 m</u> ও 1.5 m। একটি পাম্প 25 মিনিটে কুয়াটিকে পানিশূন্য করতে পারে। পাম্পের অশ্বক্ষমতা নির্ণয় ক<mark>র। 0.4 hp</mark> ক্ষমতার আরও একটি পাম্প যুক্ত করলে কী পরিমাণ সময় সাশ্রয় হবে ?

আমরা জানি.

 $P = rac{W}{t}$ কিন্তু কাজ, W = F imes hএখানে F হচ্ছে পানির ওজন, F = mgকিন্তু m হচ্ছে কুয়ার পানির ভর। পানির ঘনত্ব ρ এবং আয়তন V হলে,

 $m = V\rho$ ক্ষমতা, P = ?কিন্তু পানির আয়তন হচ্ছে কুয়ার আয়তন। $\therefore V = \pi r^2 l$ সূতরাং $P = \frac{W}{t} = \frac{Fh}{t} = \frac{mgh}{t} = \frac{V\rho gh}{t} = \frac{\pi r^2 l \rho gh}{t}$ $= \frac{\pi \times (0.75 \text{ m})^2 \times 10 \text{ m} \times 10^3 \text{ kg m}^{-3} \times 9.8 \text{ m s}^{-2} \times 5 \text{ m}}{1500 \text{ s}}$ $= 576.975 \text{ W} = \frac{576.975}{746} \text{ hp} = 0.773 \text{ hp}$ দ্বিতীয় পাম্পের ক্ষমতা, P' = 0.4 hp \therefore মোট ক্ষমতা, P + P' = 0.773 hp + 0.4 hp = 1.173 phমিলিত পাম্প দ্বারা পানি শূন্য করতে প্রয়োজনীয় সময় t হলে

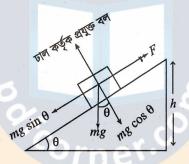
পদার্থ-১ম (হাসান) -২৩(ক)

এখানে, কুয়ার গভীরতা, l = 10 m কুয়ার ব্যাস, d = 1.5 m :: কুয়ার ব্যাসার্ধ, r = 0.75 m সময়, t = 25 min $= 25 \times 60$ s = 1500 s পানি ওঠানোর কার্যকর বা গড় উচ্চতা, $h = \frac{0 + 10}{2} = 5$ m ফ্রয়তা P = 2

$$P + P' = \frac{W}{t}$$

$$\exists t, t = \frac{W}{P + P'} = \frac{\pi r^2 l \rho g h}{P + P'}$$

$$= \frac{\pi \times (0.75 \text{ m})^2 \times 10 \text{ m} \times 10^3 \text{ kg m}^{-3} \times 9.8 \text{ m} \text{ s}^{-2} \times 5 \text{ m}}{(1.173 \times 746) \text{ W}}$$


$$= 989.0345 \text{ s}$$

$$= 16.48 \text{ min}$$

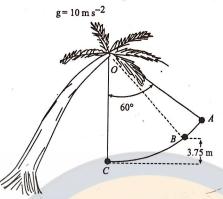
∴ সময় সাশ্রয় হবে = 25 min – 16.48 min = 8.52 min

উ: 0.773 hp এবং 8.52 min

গাণিতিক উদাহুরণ : ৫.২০। চিত্রে অনুভূমিকের সাথে θ কোণে আনত একটি ঘর্ষণবিহীন তলে একটি $m \log \cos x$ ভরের বস্তু দেখানো হলো। (ক) বস্তুটিকে তলের উপরের দিকে v ধ্রুব বেগে গতিশীল করতে তলের সমান্তরালে F বল প্রয়োগ করা হলো। বস্তুটিকে তলের উপরের দিকে 'x' m দূরত্ব অতিক্রম করার জন্য কত কাজ করতে হবে ? (খ) যদি বস্তুটিকে v বেগে গতিশীল রাখার জন্য 'a' ত্বরণ সৃষ্টি করতে হয় তবে কত ক্ষমতা প্রয়োগ করতে হবে ? [ঢা. বো. ২০১৫]

আমরা জানি, কৃতকাজ, $W = F \times s$ $W = Fx = mg \sin \theta x$ $\therefore W = mgx \sin \theta$

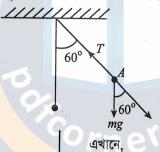
এবং ক্ষমতা, $P = \frac{W}{t} = \frac{F \times s}{t} = Fv$


এখানে, বল, $F = mg \sin \theta$ দূরত্ব, s = x m কাজ, W = ?বেগ, v = vত্বরণ, a = aক্ষমতা, P = ?

চিত্রানুযায়ী,

বস্তুটির উপর লব্ধি বল, $F - mg \sin \theta = ma$: $F = ma + mg \sin \theta$ সুতরাং ক্ষমতা, $P = Fv = mav + mgv \sin \theta$ উ: (ক) $mg x \sin \theta$ (খ) $mav + mgv \sin \theta$

কাজ, শক্তি ও ক্ষমতা


গাণিতিক উদাহরণ : ৫.২১। 2 kg ভরের একটি বস্তুকে 10 m সুতার সাহায্যে $\,O$ বিন্দুতে ঝুলানো হলো এবং A বিন্দু থেকে স্বাধীনভাবে দুলতে দেওয়া হলো। ঘর্ষণ ও বায়ুজনিত বাধা অগ্রাহ্য কর।

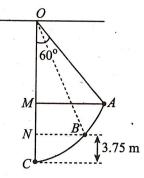
(ক) দোলন অবস্থায় A বিন্দুতে সুতার টান নির্ণয় কর।

(খ) উদ্দীপকে C বিন্দুতে বস্তুর গতিশক্তি B বিন্দুর গতিশক্তি অপেক্ষা ভিন্ন হবে কি? প্রয়োজনীয় গাণিতিক বিশ্লেষণসহ তোমার উত্তরের সপক্ষে যুক্তি দাও। [ঢা. বো. ২০১৬]

(ক) A বিন্দুতে সুতার টান বস্তুটির ও<mark>জনের সু</mark>তা বরাবর অংশকে নিষ্ক্রিয় করে।

 $\therefore T = mg \cos 60^{\circ}$

= 2 kg × 10 m s⁻² × cos 60° = 10 N


বস্থুর ভর, m = 2 kg $g = 10 \text{ m s}^{-2}$ সুতার টান, T = ?

.

(খ) ধরি, *C* বিন্দুতে বিভব শক্তি শূন্য।

A বিন্দুতে বস্তুর মোট শক্তি
$$E_A$$
 এবং তার বিভব শক্তি U_A ।

সুতরাং,
$$U_A = mg \times MC$$

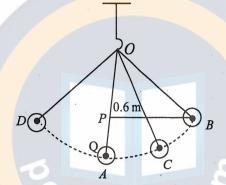
 $\cos 60^\circ = \frac{OM}{OA}$ এখানে, OC = OB = OA = 10 m $\therefore OM = OA \times \cos 60^{\circ}$ NC = 3.75 m $= 10 \text{ m} \times \cos 60^{\circ}$ = 5m $\therefore MC = OC - OM = 10 \text{ m} - 5 \text{ m} = 5 \text{ m}$ সুতরাং, $U_A = mg imes MC = 2 ext{ kg} imes 10 ext{ m s}^{-2} imes 5 ext{ m} = 100 ext{ J}$ A বিন্দুতে বেগ শূন্য, তাই গতিশক্তি, $K_A = 0$ শক্তির নিত্যতা অনুসারে, $E_A = U_A + K_A = 100 \text{ J} + 0 = 100 \text{ J}$ ∴B এবং C বিন্দুতেও মোট শক্তি একই থাকবে অর্থাৎ, $E_A = E_B = E_C = 100 \text{ J}$ এখন B বিন্দুতে বিভব শক্তি, $U_B = mg \times NC = 2 \text{ kg} \times 10 \text{ m s}^{-2} \times 3.75 \text{ m} = 73.5 \text{ J}$:. $K_B = E_B - U_B = 100 \text{ J} - 75 \text{ J} = 25 \text{ J}$ আবার, C বিন্দুতে বিভব শক্তি, U_C = 0 :. C বিন্দুতে গতিশক্তি, $K_c = E_c - U_c = 100 \text{ J} - 0 = 100 \text{ J}$ $\therefore K_C \neq K_B$ সুতরাং B বিন্দু ও C বিন্দুতে গতিশক্তি ভিন্ন। উ: (ক) 10 N (খ<mark>) *B* এ</mark>বং *C* বিন্দুতে গতিশক্তি ভিন্ন হবে। গাণিতিক উদাহরণ <mark>৫.২২</mark>। খালিদের বাড়িতে 12 m গভীর ও 1.8 m ব্যা<mark>সবিশিষ্ট</mark> একটি পানিপূর্ণ কুয়া খালি করার জন্য একটি পাম্প <mark>চালু ক</mark>রা হলো। কিন্তু দেখা গেল, পানিশূন্য করতে পাম্পটির 21 মিনিট সময় লেগে গেল। খালিদ হিসাব করে দেখল <mark>যথাসম</mark>য়ে কুয়াটিকে পানিশূন্য করতে 2 hp ক্ষম<mark>তার পা</mark>ম্প দরকার। (ক) 2kg ভরের বস্তুকে হেড়ে দিলে পানিশূন্য কুয়ার শীর্ষ হতে তলায় পৌঁছাতে কত সময় লাগবে? (খ) গাণিতিক বিশ্লেষণসহ <mark>খালিদের</mark> হিসাবের যথার্থতা যাচাই ক<mark>র</mark>। [দি. বো. ২০১৬] (ক) আমরা জানি, এখানে, বস্তুর আদি বেগ, $v_o = 0$ $h = v_{\circ}t + \frac{1}{2}gt^2$ দরত, h = 12 m $12 \text{ m} = O + \frac{1}{2} \times 9.8 \text{ m} \text{ s}^{-2} \times t^2$ সময়, t = ? $g = 9.8 \text{ m s}^{-2}$ $\therefore t^2 = 2.45 \text{ s}^2$ $\therefore t = 1.56 \text{ s}$

(খ) ধরি পানি শূন্য করার পাম্পটির প্রয়োজনীয় ক্ষমতা \dot{P} ।

আমরা জানি, $P = \frac{W}{t}$ কিন্তু কাজ, $W = F \times h$ এখানে F হচ্ছে পানির ওজন F = mgকিন্তু m হচ্ছে কুয়ার পানির ভর । পানির ঘনত্ব ρ এবং আয়তন V হলে, Qখানে, কুয়ার গাভীরতা, l = 12 mকুয়ার ব্যাসার্ধ, r = 0.9 mসময়, $t = 21 \text{ min} = 21 \times 60 \text{ s} = 1260 \text{ s}$ পানি ওঠানোর কার্যকর বা গড় উচ্চতা, $h = \frac{0 + 12 \text{ m}}{2} = 6 \text{ m}$ ক্ষমতা, P = ?

 $m = V\rho$

কিন্তু পানির আয়তন হচ্ছে কুয়ার আয়তন।


:.
$$V = \pi r^2 l$$

From $P = \frac{W}{t} = \frac{Fh}{t} = \frac{mgh}{t} = \frac{V\rho gh}{t} = \frac{\pi r^2 l\rho gh}{t}$
 $= \frac{\pi \times (0.9 \text{ m})^2 \times 12 \text{ m} \times 1000 \text{ kg m}^{-3} \times 9.8 \text{ m s}^{-2} \times 6 \text{ m}}{1260 \text{ s}}$
 $= 1424.3 \text{ W} = \frac{1424.3}{746} \text{ hp} = 1.9 \text{ hp}$

খালিদের হিসাবকৃত ক্ষমতা ছিল 2 hp যা পানি ওঠানোর জন্য যথার্থ।

উ: (ক) 1.56 s (খ) খালিদের হিসাব যথার্থ ছিল।

গাণিতিক উদাহরণ ৫.২৩। নিচের চিত্রে একটি দোলক সরল দোলন গতিতে দুলছে। যার সর্বোচ্চ বিস্তার PB। 0.2 kg ভরের ববের চারটি বিভিন্ন অবস্থান হলো A, B, C এবং D।

বেখানে, PB = 0.6 m, OB = OC = OA = OD = 1 m

(ক) A বিন্দুতে ববটির বেগ নির্ণয় কর।

(খ) উদ্দীপকের দোলকটিতে যান্ত্রি<mark>কশক্তি</mark> নিত্যতার ব্যত্যয় ঘটবে কিনা ?

[রা. বো. ২০১৬]

(ক) উদ্দীপকে চিত্রানুসারে,

$$OA = 1m$$

$$PB = 0.6 \text{ m}$$

$$OB = 1m$$

এখন, $OB^2 = OP^2 + PB^2$

$$OP^2 = OB^2 - PB^2$$

:. $OP = \sqrt{(1m)^2 - (0.6 m)^2} = 0.8 m$

ববটির সর্বোচ্চ উল্লম্ব সরণ, AP = h = OA - OP = 1 m - 0.8 m = 0.2 m। শক্তির নিত্যতা সূত্রানুসারে, A বিন্দুতে গতিশক্তি = B বিন্দুতে বিভবশক্তি। A বিন্দুতে ববের বেগ v_A এবং ববের ভর m হলে,

$$\frac{1}{2}mv_A{}^2 = mgh$$
¬↑, $v_A = \sqrt{2gh} = \sqrt{2 \times 9.8} \text{ m s}^{-2} \times 0.2 \text{ m}$
∴ $v_A = 1.98 \text{ m s}^{-1}$

(খ) আমরা জানি, A বিন্দুতে মোট যান্ত্রিক শক্তি E_A এখানে. = A বিন্দুতে গতিশক্তি + A বিন্দুতে বিভব শক্তি ববের ভর, m = 0.2 kg অর্থাৎ $E_A = K_A + U_A$ A বিন্দুতে উল্লম্ব সরণ, $h_A = 0$ $=\frac{1}{2}mv_A^2 + mgh_A$ A বিন্দুতে ববের বেগ, $v_A = 1.98 \text{ m s}^{-1}$ $=\frac{1}{2} \times 0.2 \text{ kg} \times (1.98 \text{ m s}^{-1})^2 + 0$ অভিকর্ষজ ত্বুরণ, $g = 9.8 \text{ m s}^{-2}$ $[\because h_A = 0] \mid B$ বিন্দুতে বা A বিন্দুতে মোটশক্তি, $E_A = ?$ ববের উল্লম্ব সরণ, $h_B = 0.2 \text{ m}$ = 0.392 JB বিন্দুতে ববের বেগ, $v_B = 0$ B বিন্দুতে মোট শক্তি, $E_B = K_B + U_B$ B বিন্দুতে মোট শক্তি, $E_B = ?$ $=\frac{1}{2}mv_B^2 + mgh_B$ $= 0 + 0.2 \text{ kg} \times 9.8 \text{ m s}^{-2} \times 0.2 \text{ m}$ = 0.392 J $\therefore C$ বিন্দুতে মোট শক্তি, $E_C = K_C + U_C$ $=\frac{1}{2}mv_{c}^{2}+mgh_{c}$ এখন উদ্দীপকের চিত্র থেকে C বিন্দুতে ববের উল্লম্ব সরণ, $h_C = AQ$ = AP - OP= 0.2 m - QP:. C বিন্দুতে ববের বেগ, $v_c = \sqrt{v_B^2 + 2g \times QP}$ $=\sqrt{0+2\times9.8\times QP}=\sqrt{1.96} QP$ $\therefore E_C = \frac{1}{2} \times 0.2 \text{ kg} \times 1.96 \text{ } QP + 0.2 \text{ kg} \times 9.8 \text{ m s}^{-2} \times (0.2 \text{ m} - QP)$ $= 0.1 \times 1.96 \ QP + 0.196 \ \text{kg m s}^{-1} \times 0.2 \ \text{m} - 0.196 \ QP$ $= 0.196 \text{ N} \times 0.2 \text{ m} = 0.392 \text{ J}$ যেহেতু, $E_A=E_B=E_C$, অর্থাৎ ববের গতিপথের সকল বিন্দুতে দোলকটির যান্ত্রিক শক্তি একই হয়। সুতরাং

উদ্দীপকের দোলকটিতে যান্ত্রিক শক্তির ব্যত্যয় ঘটবে না।

উ: 1.98 m s⁻¹ ; (খ) গতিপথের সকল বিন্দুতে যান্ত্রিক শক্তির নিত্যতার ব্যত্যয় ঘটবে না।

গাণিতিক উদাহরণ ৫.২৪। পেট্রোনাস টুইন টাওয়ারের শীর্ষ তলের উচ্চতা 375 m। কাসেম 10 kg ভরের একটি বন্তুসহ শীর্ষ তলে আরোহণ করেন। এতে সময় লাগে 40 মিনিট। তিনি শীর্ষতল থেকে বস্তুটি নিচে ফেলে দিলেন। উহা বিনা বাধায় ভূমিতে পতিত হলো। মনির বললেন, "আমি এই কাজটি করতে পারবো।" কাসেমের ভর 60 kg এবং মনিরের ভর 55 kg।

(ক) ভূমি থেকে কত উচ্চতায় বস্তুটির বিভব শক্তি এর গতিশক্তির দিগুণ হবে ?

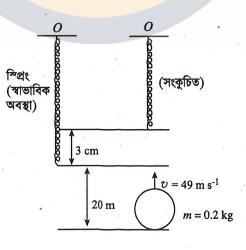
(খ) মনির কী একই সময়ে কাজটি করতে পারবেন? গাণিতিক বিশ্লেষণপূর্বক মতামত দাও। [সি. বো. ২০১৫] (ক) এখানে, বস্তুর ভর, m = 10 kg এবং টাওয়ারের উচ্চতা, h = 375 m

ধরা যাক, ভূমি থেকে 🗴 উচ্চতায় এর বিভব শক্তি U, গতিশক্তি K এর দ্বিগুণ হবে।

 $\therefore U = 2K$ • কিন্থু x উচ্চতায় বস্তুর বিভব শক্তি, U = mgx $\therefore x$ উচ্চতায় বস্তুর গতিশক্তি, $K = \frac{1}{2} mgx$ আবার h উচ্চতায় বস্তুর মোট শক্তি তথা বিভবশক্তি, E = mghএখন শক্তির নিত্যতা সূত্রানুসারে, x উচ্চতায়

$$K + U = E$$

बो, $\frac{1}{2}mgx + mgx = mgh$
बो, $\frac{3}{2}x = h$
बो, $x = \frac{2 \times 375 \text{ m}}{3} = 250 \text{ m}$


অর্থাৎ ভূমি থেকে 250 m উচ্চতায় বস্তুটির বিভব শক্তি এর গতিশক্তির দ্বিগুণ হবে।

(খ) টুইন টাওয়ারের শার্ষে 10 kg ভরসহ আরোহণ করতে	এখানে,
কাসেমের ব্যবহৃত ক্ষমতা, $P=rac{W}{t}=rac{mgh}{t}$	বস্তুসহ কাসেমের ভর, <i>M</i> = 60 kg + 10 kg = 70 kg
$\therefore P = \frac{70 \text{ kg} \times 9.8 \text{ m s}^{-2} \times 375 \text{ m}}{2400 \text{ s}} = 107.2 \text{ W}$	উচ্চতা, h = 375 m
	সময়, $t = 40 \text{ min} = 2400 \text{ s}$
একই সময়ে 10 kg ভরসহ টুইন <mark>টাওয়া</mark> রের শীর্ষে আরোহণ	বস্তুসহ মনিরের ভর, M' = <mark>55 k</mark> g + 10 kg = 65 kg
করতে মনিরের প্রয়োজনীয় ক্ষমতা <mark>,</mark>	অভিকর্ষজ তুরণ, g = 9.8 m s ⁻²
$P' = \frac{mgh}{t}$	
	কাসেমের ক্ষমতা, P = ?
$= \frac{65 \text{ kg} \times 9.8 \text{ m s}^{-2} \times 375 \text{ m}}{2400 \text{ s}} = 99.5 \text{ W}.$	মনিরের ক্ষমতা, $P'=?$
2400 \$	

মনিরের প্রয়োজনীয় ক্ষমতা কাসেমের ব্যবহৃত ক্ষমতার চেয়ে কম, সুতরাং মনির নিঃসন্দেহে একই সময়ে কাজটি করতে পারবেন।

উ: (ক) 250 m; (খ) মনির পারবেন।

গাণিতিক উদাহরণ ৫.২৫।

উপরের চিত্রে একটি স্প্রিং-এর একপ্রান্ত O বিন্দু হতে ঝুলানো হলো। 0.2 kg ভরের একটি বলকে 49 m s^{-1} বেগে নিক্ষেপ করায় এটি 20 m উপরে স্প্রিংটির অপর প্রান্তে আঘাত করে 3 cm সংকুচিত করে, স্প্রিংটিও বলের উপর প্রত্যয়নী বল প্রয়োগ করে।

(ক) ভূমিতে আঘাতের পূর্ব মুহূর্তে বলটির বেগ নির্ণয় কর।

(খ) উদ্দীপক থেকে স্প্রিং বল দ্বারা কৃত কাজ নির্ণয় সম্ভব কিনা—গাণিতিক যুক্তি দিয়ে ব্যাখ্যা কর, বিশ্লেষণ করে মতামত দাও।

(ক) আমরা জানি,	এখানে,
$v^2 = v_0^2 + 2gh$	বলটির অতিক্রান্ত দূরত্ব, $h = 20 \text{ m} + 3 \text{ cm}$
	= 20.03 m
বা, $v^2 = 0 + 2 \times 9.8 \text{ m s}^{-2} \times 20.03 \text{ m}$	অভিকর্ষজ ত্বরণ, $g=9.8~{ m m~s^{-2}}$
$\therefore v = 19.81 \text{ m s}^{-1}$	সর্বোচ্চ উচ্চতায় বেগ, $v_{o} = 0 \text{ m s}^{-1}$
	ভূমিতে আঘাত পূর্ব মুহূর্তে বেগ, v = ?

(খ) স্প্রিংটি শুধুমাত্র সংকোচনের সময় কাজ সম্পন্ন হবে যা হবে স্প্রিংটি স্পর্শের সময় বলটির গতিশক্তির সমান।

এখানে,	
--------	--

$v^2 = v_o^2 - 2gh$	বলটির আদিবেগ, $v_o = 49 \text{ m s}^{-1}$ অভিকর্ষজ তুরণ, $g = 9.8 \text{ m s}^{-2}$
বা, $v^2 = (49 \text{ m s}^{-1})^2 - 2 \times 9.8 \text{ m s}^{-2} \times 20 \text{ m}$	উচ্চতা, h = 20 m
	শেষ বেগ, v = ? বলটির ভর, m <mark>= 0.2</mark> kg
	গতিশক্তি, K = ?
1 1	·

$$\therefore K = \frac{1}{2} mv^2 = \frac{1}{2} \times 0.2 \text{ kg} \times 2009 \text{ m}^2 \text{ s}^{-2}$$

= 200.9 J

क्रिके स्थार्थन प्रयाग तलापित तर्श 11 राल

উ: (ক) 19.81 m s⁻¹; (খ) স্প্রিং বল দ্বারা কৃতকাজ 200.9 J অর্থাৎ স্<mark>প্রিং বল দ্বা</mark>রা কাজ করা সম্ভব।

গাণিতিক উদহরণ ৫.২৬। প্রতি তলার উচ্চতা 5 m হিসেবে ১০ তলা ভবনের সর্বোচ্চ তলায় বসবাসরত একটি পরিবারে একটি শিশু আছে। শিশুটি বারান্দার থ্রিল দিয়ে 100 gm ভরের একটি টেনিস বল ছেড়ে দিলে তা কিছুক্ষণের মধ্যে মাটিতে আঘাত করে।

(ক) উদ্দীপকে উল্লিখিত টেনিস বলটি কত সময় পরে মাটিতে আঘাত করবে?

(খ) ভবনটির ৭ম ও ৪র্থ তলায় বলটি মোট শক্তি উদ্দীপকের তথ্য ব্যবহার করে গণনা করলে তা শক্তির সংরক্ষণ সূত্র মেনে চলবে—এ উক্তিটির সত্যতা যাচাই করে তোমার মতামত দাও। [অভিনু প্রশ্ন (ক সেট) ২০১৮]

$n = v_0 t + \frac{1}{2} g t^2$ বা, 45 m = 0 + 9.8 m s ⁻² × t ² আদিবেগ, $v_0 = 0$ জাজিকস্থান্ধ জ্বলা $a = 0.8$ m s ⁻²	(ক) আমরা জানি,	এখানে,
বা, $45 \text{ m} = 0 + 9.8 \text{ m} \text{ s}^{-2} \times t^2$ আদিবেগ, $v_o = 0$ আদিবেগ, $v_o = 0$	$h = v_0 t + \frac{1}{2} g t^2$	উচ্চতা, $h=5~{ m m} imes 9=4.5~{ m m}$
\sqrt{n}		
		অভিকর্ষজ ত্বুরণ, $g = 9.8 \text{ m s}^{-2}$
বা, $t^2 = \frac{90 \text{ m}}{9.8 \text{ m s}^{-2}} = 9.18 \text{ s}^2$ সময়, $t = ?$	$41, t^2 = \frac{9.8 \text{ m s}^{-2}}{9.8 \text{ m s}^{-2}} = 9.18 \text{ s}^2$	সময়, <i>t</i> = ?

:. t = 3.03 s

এখানে, (খ) আমরা জানি, $v_7^2 = v_0^2 = +2gh_7 = 0 + 2 \times 9.8 \text{ m s}^{-2} \times 15 \text{ m}$ বলটির ভর, m = 100 g = 0.1 kg উপর থেকে ৭ম তলার দূরত্ব, $h_7=5~{
m m} imes 3=15~{
m m}$ $\therefore K_7 = \frac{1}{2} m v_7^2$ উপর থেকে ৪র্থ তলার দূরত্ব, $h_4 = 5 \text{ m} \times 6 = 30 \text{ m}$ $=\frac{1}{2} \times 0.1 \text{ kg} \times 2 \times 9.8 \text{ m s}^{-2} \times 15 \text{ m}$ বলের আদিবেগ, $v_o = 0$ ৭ম তলায় বলের বেগ, v7 = ? = 14.7 J8ৰ্থ তলায় বলের বেগ, v₄ = ? এবং $U_7 = mgh_7' = 0.1 \text{ kg} \times 9.8 \text{ m s}^{-2} \times 30 \text{ m}$ ৭ম তলায় গতিশক্তি, $K_7 = ?$ = 29.4 J8র্থ তলায় গতিশক্তি, K₄ = ? \therefore ৭ম তলার মোট শক্তি, $E_7 = K_7 + U_7$ নিচ থেকে ৪ৰ্থ তলার উচ্চতা, $h_4' = 5 \text{ m} \times 3 = 15 \text{ m}$ = 14.7 J + 29.4 J নিচ থেকে ৭ম তলার উচ্চতা, $h_7' = 5 \text{ m} \times 6 = 30 \text{ m}$ = 44.1 J8ৰ্থ তলার স্থিতিশক্তি, U₄ = ? ৭ম তলার স্থিতি<u>শক্তি, U7</u> = ?

আবার,
$$v_4^2 = v_0^2 + 2gh_4 = 0 + 2 \times 9.8 \text{ m s}^{-2} \times 30 \text{ m} = 29.4 \text{ J}$$

 $\therefore K_4 = \frac{1}{2} \times 0.1 \text{ kg} \times 2 \times 9.8 \text{ m s}^{-2} \times 30 \text{ m} = 29.4 \text{ J}$
এবং $U_4 = mgh_4' = 0.1 \text{ kg} \times 9.8 \text{ m s}^{-2} \times 15 \text{ m} = 14.7 \text{ J}$

:. 8র্থ তলার মোট শক্তি, $E_4 = K_4 + U_4 = 29.4 \text{ J} + 14.7 \text{ J}$

= 44.1 J

সুতরাং উদ্দীপকের তথ্য ব্যবহার <mark>করে গণ</mark>না করে দেখা যায় যে,

৪র্থ ও ৭ম তলায় মোটশক্তি, $E_4 = \frac{E_7}{E_7} = 44.1$ J অর্থাৎ উভয় তলায় মোট শক্তির পরিমাণ একই অর্থাৎ বলটি শক্তির সংরক্ষণ সূত্র মেনে চলবে।

উ: (ক) 3.03 s; (খ) শক্তির সংরক্ষণ সূত্র মেনে চলবে।

গাণিতিক উদাহরণ ৫.২৭। একটি কণার উপর $\overrightarrow{F} = (-2\ i\ +\ 3\ j\ +\ 4\ k)$ N বল প্রয়োগের ফলে Q (3, -4, -2) বিন্দু থেকে P (-2, 3, 5) বিন্দুতে স্থানান্তরিত হয়। বল কর্তৃক সম্পাদিত কাজের পরিমাণ নির্ণয় কর।

এখানে,

Q विम्पूत जवञ्चान ७७ छेत्र $\overrightarrow{r_1} = (3 \ i - 4 \ j - 2 \ k)$ धवः P विम्पूत जवञ्चान ७७ छेत्र $\overrightarrow{r_2} = (-2 \ i + 3 \ j + 5 \ k)$ ∴ সत्रभ, $\overrightarrow{r} = \overrightarrow{r_2} - \overrightarrow{r_1} = (-2 - 3) \ i + (3 + 4) \ j + (5 + 2) \ k = (-5 \ j + 7 \ j + 7 \ k)$ जाभत्रा জानि काज, $W = \overrightarrow{F}$. $\overrightarrow{r} = (-2 \ i + 3 \ j + 4 \ k)$ N. $(-5 \ i + 7 \ j + 7 \ k)$ m

= (10 + 21 + 28) J = 59 J

উ: 59 J

গাণিতিক উদাহরণ ৫.২৮। পুত্রের ভর পিতার ভরের অর্ধেক। পিতার গতিশক্তি পুত্রের গতিশক্তির অর্ধেক। পিতার বেগ $1 \ {
m m s^{-1}}$ বাড়ালে তার গতিশক্তি পুত্রের গতিশক্তির সমান হয়। উভয়ের বেগ নির্ণয় কর।

> এখানে ধরা যাক, পিতার ভর, m_1

 \therefore পুত্রের ভর, $m_2 = \frac{m_1}{2}$

পিতার বেগ, $v_1 = ?$ পুত্রের বেগ, v₂ = ?

[বুয়েট ২০১৫–২০১৬]

আমরা জানি,
পিতার গতিশক্তি,
$$E_1 = \frac{1}{2} m_1 v_1^2$$

পুত্রের গতিশক্তি, $E_2 = \frac{1}{2} m_2 v_2^2 = \frac{1}{2} \cdot \frac{m_1}{2} v_2^2$
$$= \frac{m_1 v_2^2}{4}$$

শর্তানুসারে, $E_1 = \frac{1}{2}E_2$ $\overline{\mathbf{A}}, \frac{1}{2} m_1 \nu_1^2 = \frac{1}{2} \times \frac{m_1 \nu_2^2}{4}$ $\therefore v_2^2 = 4v_1^2$

:
$$v_2 = 2v$$

∴ ν₂ = 2ν₁ আবার পিতার বেগ, (ν₁ + <mark>1 m s⁻¹)</mark> হলে তার গতিশক্তি

$$E_1' = \frac{1}{2} m_1 (v_1 + 1 \text{ m s}^{-1})^2$$

এবং যেহেতু $E_1' = E_2$

$$\therefore \frac{1}{2} m_1 (v_1 + 1 \text{ m s}^{-1})^2 = \frac{m_1 v_2^2}{4} = \frac{m_1 (2v_1)^2}{4} = m_1 v_1^2$$

$$(v_1 + 1 \text{ m s}^{-1}) = \sqrt{2v_1}$$

ৰা,
$$\sqrt{2} v_1 - v_1 = 1 \text{ m s}^-$$

$$\therefore v_1 = 2.42 \text{ m s}^{-1}$$
 and $v_2 = 2v_1 = 2 \times 2.42 \text{ m s}^{-1} = 4.84 \text{ m s}^{-1}$

ড: পিতার বেগ
$$v_1 = 2.42~{
m m~s}^{-1}$$
 এবং পুত্রের বেগ $v_2 = 4.84~{
m m~s}^{-1}$

গাণিতিক উদাহরণ ৫.২৯। 300 m উঁচু হতে একটি বন্থু অভিকর্ষের টানে মুক্তভাবে নিচে পড়লে কোথায় তার গতিশক্তি বিভবশক্তির অর্ধেক হবে ? [কু. বো. ২০১২]

মনে করি, বস্তুর ভর m।

ধরা যাক, ভূমি থেকে x উচ্চতায় এর গতিশক্তি K বিভব শক্তি U-এর অর্ধেক হবে।

$$\therefore K = \frac{1}{2}U$$

কিন্থু x উচ্চতায় বস্থুর বিভবশক্তি, U = mgx

∴ x উচ্চতায় বস্তুর বিভবশক্তি K = $\frac{1}{2}$ mgx

আবার 300 m উচ্চতায় বস্তুর মোটশক্তি তথা বিভব শক্তি, $E = 300 \ mg$

এখন শক্তির নিত্যতা সূত্রানুসারে, x উচ্চতায়,

$$K + U = E$$

বা, $\frac{1}{2}mgx + mgx = 300 mg$
বা, $\frac{2}{3}x = 300$

$$\therefore x = \frac{2}{3} \times 300 = 200 \text{ m}$$

উ: অর্থাৎ ভূমি থেকে 200 m উচ্চতায় গতিশক্তি বিভবশক্তির অর্ধেক হবে।

গাণিতিক উদাহরণ ৫.৩০। 20 m উঁচু একটি দালানের ছাদ থেকে m ভরের একটি টেনিস বল গড়িয়ে মাটিতে পড়ে। বলটি যখন ভূমি স্পর্শ করে তখন এর বেগ 22 m s⁻¹। বলটি ছাদ ত্যাগ করার মুহূর্তে কত বেগে গড়াচ্ছিল ? (শক্তির সংরক্ষণশীলতা নীতি ব্যবহার কর।)

এখানে.

- 1

শক্তির সংরক্ষণশীলতা নীতি থেকে আমরা জানি,

$$K_i + U_i = K_f + U_f$$
 ছাদের উচ্চতা, $h = 20$ m

 $\frac{1}{2}mv_i^2 + mgh = \frac{1}{2}mv_f^2 + 0$
 ছাদের উচ্চতা, $h = 20$ m

 বা, $\frac{1}{2}v_i^2 + gh = \frac{1}{2}v_f^2$
 জাদি বেগ, $v_f = 22$ m s

 বা, $\frac{1}{2}v_i^2 + 9.8$ m s⁻² × 20 m = $\frac{1}{2}$ × (22 m s⁻¹)²
 জাদি বেগ, $v_i = ?$

 বা, $\frac{1}{2}v_i^2 + 9.8$ m s⁻² × 20 m = $\frac{1}{2}$ × (22 m s⁻¹)²
 বা, $\frac{1}{2}v_i^2 + 196$ m² s⁻² = 242 m² s⁻²

 বা, $\frac{1}{2}v_i^2 = 46$ m² s⁻²
 ...
 $v_i^2 = 92$ m² s⁻²
 $v_i = 9.59$ m s⁻¹
 ...

উ: 9.59 m s⁻¹

গাণিতিক উদাহরণ ৫.৩১। 10 kg ভরের একটি বস্তুকে 5 m উঁচু থেকে ফেলে দেয়া হলো এবং বস্তুটি একটি পেরেকের ওপর গিয়ে পড়ল। পেরেকটির তীক্ষ্ণ প্রান্ত মাটির সাথে স্পর্শযুক্ত ছিল। মাটির গড় প্রতিরোধ বল 49490 N হলে পেরেকটি মাটির ভেতর কতখানি প্রবেশ করবে ?

এখানে,

পতনশীল বস্তুর বিভবশক্তি = প্রতিরোধ বলের বিরুদ্ধে কাজ পেরেকটি মাটির মধ্যে *x* প্রবেশ করলে বস্তুটির মোট পতন *h* = 5 m + *x* অতএব, বস্তুর বিভব শক্তি = *mgh* = 10 kg × 9.8 m s⁻² × (5 m + *x*) আবার প্রতিরোধ বলের বিরুদ্ধে কাজ = 49490 N × *x* এখন প্রশ্নানুসারে,

 $10 \text{ kg} \times 9.8 \text{ m s}^{-2} \times (5 \text{ m} + x) = 49490 \text{ N} \times x$

বা, 490 N m + (98 N)x = (49490 N)x

 $\therefore x = 9.92 \times 10^{-3} \text{ m}$

উ: 9.92 × 10−3 m

গাণিতিক উদাহরণ ৫.৩২। 5 টি ঘনাকৃতি পাথর খণ্ডের প্রতিটির আয়তন 0.216 m³ ও ভর 300 kg। এদের একটি অপরটির ওপর রেখে একটি স্তম্ভ প্রস্তুত করতে কৃত কাজের পরিমাণ বের কর।

একটি পাথর খণ্ডের প্রত্যেক বাহুর দৈর্ঘ্য l হলে,

 $l^3 = 0.216 \text{ m}^3$

 $\therefore l = 0.6 \text{ m}$

পাথরখণ্ড স্থাপনে কৃত কাজ = পাথরের ওজন × ওজনের ক্রিয়া বিন্দুর সরণ

= পাথরের ওজন × অভিকর্ষ কেন্দ্রের সরণ

প্রশ্নমতে, প্রথম খণ্ডটি স্থাপনে কৃতকাজ, $W_1 = 300 \text{ kg} \times 9.8 \text{ m s}^{-2} \times 0$ [∵ অভিকর্ষ কেন্দ্রের সরণ = 0] দ্বিতীয় খণ্ডটি স্থাপনে কৃতকাজ, $W_2 = 300 \text{ kg} \times 9.8 \text{ m s}^{-2} \times 0.6 \text{ m}$ তৃতীয় খণ্ডটি স্থাপনে কৃতকাজ, $W_3 = 300 \text{ kg} \times 9.8 \text{ m s}^{-2} \times 2 \times 0.6 \text{ m}$

চতুর্থ খণ্ডটি স্থাপনে কৃতকাজ, $W_4 = 300 \text{ kg} \times 9.8 \text{ m s}^{-2} \times 3 \times 0.6 \text{ m}$

পঞ্চম খণ্ডটি স্থাপনে কৃতকাজ, $W_5 = 300 \text{ kg} imes 9.8 \text{ m s}^{-2} imes 4 imes 0.6 \text{ m}$

∴ মোট নির্ণেয় কাজ, $W = W_1 + W_2 + W_3 + W_4 + W_5$

= 17640 J

$$= 300 \times 9.8 \ (0 + 0.6 + 2 \times 0.6 + 3 \times 0.6 + 4 \times 0.6)$$
 J

উ: 17640 J.

গাণিতিক উদাহরণ ৫.৩৩। অনুভূমিক কাঠের উপর একটি পেরেক উল্লম্বভাবে রাখা আছে। 1 kg ভরের একটি হাতুড়ি দ্বারা পেরেকটিকে খাড়া নিচের দিকে 4 m s^{-1} বেগে আঘাত করা হলো। পেরেকটি কাঠের মধ্যে 0.015 m ঢুকে গেলে গড় বাধাদানকারী বল নির্ণয় কর। [রুয়েট ২০১৫–২০১৬]

আমরা জানি,

হাতুড়ির বিভবশক্তি + গ<mark>তিশক্তি</mark> = কাঠের প্রতিরোধ

কাঠের প্রতিরোধ হাতুড়ির ভর, m = 1 kgবলের বিরুদ্ধে কাজ হাতুড়ির বেগ, $v = 4 \text{ m s}^{-1}$ পেরেকের সরণ, x = 0.015 mঅভিকর্ষজ ত্ব্বণ, $g = 9.8 \text{ m s}^{-2}$

এখানে,

 $∴ F = mg + \frac{mv^2}{2x}$ $= 1 \text{ kg} \times 9.8 \text{ m s}^{-2} + \frac{1 \text{ kg} \times (4 \text{ m s}^{-1})^2}{2 \times 0.015 \text{ m}} = 543.13 \text{ N}$

উ: 543.13 N

21

বা, $mgx + \frac{1}{2}mv^2 = Fx$

অনুশীলনী

ক-বিভাগ:) বহুনির্বাচনি প্রশ্ন (MCQ)

সঠিক/সর্বোৎকৃষ্ট উত্তরের বৃত্ত () ভরাট কর :

১। কোনো বস্তুর উপর F বল প্রয়োগে বলের দিকের সাথে θ কোণ করে বলের প্রয়োগ বিন্দুর S সরণ হলে কাজের পরিমাণ হবে—

$(\overline{\Phi}) W = FS$	0	(*) $W = FS \sin \theta$	0
$(\mathfrak{N}) W = \frac{F}{S \cos \theta}$	0	$(\mathfrak{V}) W = \overrightarrow{\mathbf{F}} \cdot \overrightarrow{\mathbf{S}}$	0
নিচের কোনটি কাজের এককের সমতুল্য ?			
(本) N m ⁻¹	0	(켁) m N ⁻¹	0
(গ) N m	0	(직) J m ⁻¹	0

কাজ, শক্তি ও ক্ষমতা

9	গতিশক্তির মাত্রা কোনটি ?	গ. বো. ২০১৩	৮; য. বো. ২০১৬; রা. বো. ২০	১৬; সি. বো. ২০১৭]
	$(\Phi) ML^2T^2$	0	(켁) ML ² T ⁻¹	0
	(গ) ML ² T ⁻²	0	(되) ML ⁻² T ²	0
8	বল ও সরণের মধ্যবর্তী কোণের কোন মানের জন্য	বলের দ্বারা ব	কাজ সম্পন্ন হবে?	[য. বো. ২০১৭]
	(ক) 60°	0	(켁) 120°	0
	(গ) 180°	0	(ম) 210°	0
¢ I	1cm পুরুত্বের ও 200 g ভরের মিটার স্কেলকে ড	মনুভূমিক অব	স্থা থেকে খাড়া করলে বিভব শ	ক্তি—— [ব. বো. ২০১৬]
	(•) 0.970 J	0	(켁) 1.940 J	0
	(গ) 1.960 J	0	(픽) 19.60 J	0
51	কোনো স্প্রিং-এর মুক্ত প্রান্তের একক সরণ ঘটালে	ম্প্রিংটি সরণ	ণর বিপরীত দিকে যে বল প্রয়ে	াগ করে তাকে কী বলা
	হয় ?			
	(ক) বাহ্যিক বল	\circ	(খ) প্রযুক্ত বল	0
	(গ) শ্রিং ধ্রুবক	0	(ঘ) কোনোটিই নয়	0
91	k ম্প্রিং ধ্রুবকবিশিষ্ট কোনো স্প্রিং-এ <mark>র মুক্ত</mark> প্রান্তের	x পরিমাণ স		– [রা. বো. ২০১৬]
	$(\overline{\Phi}) W = kx^2$	0	$(\checkmark) W = \frac{1}{2} kx^2$	0
	(গ) $W = kx$	0	$(\mathfrak{A}) W = -\frac{1}{2} k x$	0
61	কিলোওয়াট-ঘণ্টা নিচের কো <mark>ন রা</mark> শিটির একক নয়	?		
	(ক) ক্ষমতা	0	(খ) কাজ	0
	(গ) শক্তি	0	(ঘ) বিদ্যুৎশক্তি	0
31	গতিশক্তি ও ভরবেগের মধ্য <mark>ে সম্প</mark> র্ক কোনটি ?		S	[সি. বো. ২০১৬]
	$(\overline{\Phi}) K = \frac{2p}{m}$	0	$(\mathfrak{A}) K = \frac{p}{2m}$	0
	(i) $K = \frac{2p^2}{m}$	6	$(\mathfrak{V}) \ K = \frac{p^2}{2m}$	0
201	বিভব শক্তির একক কোনটি ?		Lin	
	(ক) জুল	0	(খ) জুল/কেজি	0
	(গ) জুল/(কেজি) ²	0	(ঘ) নিউটন/কেজি	0
221	নিচের কোনটি ক্ষমতার একক নয় ?		×	
	(ক) অশ্বক্ষমতা	0	(খ) জুল/সেকেন্ড	0
	(গ) ওয়াট	0	(ঘ) জুল	0
221	ওয়াট-এর সাথে অশ্বক্ষমতার সম্পর্ক কোনটি ?			÷. "
	(•) 1 hp = 550 W	0	(켁) 1 hp = 746 W	0
	(গ) 1 hp = 3.6×10^6 W	0	(ঘ) কোনোটিই নয়	0
১৩।				[রা. বো. ২০১৭]
	(雨) 1 kWh = 1000 J	0	(켁) 1 kWh = 3600 J	0
	(1) 1 kWh = 3.6×10^6 J	0	$(\forall) 1 \text{ kWh} = 6000 \text{ J}$	0

পদার্থবিজ্ঞান-প্রথম পত্র

38 1	h উচ্চতা থেকে একটি বস্তুকে বিনা বাধা	য় পড়তে দিলে	ঁভূমি হতে ক	ত উচ্চতায় এর	গতিশক্তি বি	ভব শক্তির দ্বিগুণ
	হবে?				[f	দি. বো. ২০১৬]
	$(\overline{\mathbf{a}})\frac{h}{6}$	0	(켁)	$\frac{2h}{3}$	0	
	$(\mathfrak{N}) \frac{h}{3}$	0	(ঘ)	$\frac{5h}{3}$	0	
196	একটি রাইফেলের গুলির বেগ যদি দ্বিগুণ ব	ম্রা হয় তাহলে	এর গতিশক্তি	কতগুণ হবে ?		
				[মেডিকেল ১৯	৯৫–১৯৯৬,	১৯৯২–১৯৯৩]
	(ক) 2 গুণ	0	(켁)	3 গুণ	0	
	(গ) 4 গুণ	0	(ঘ)	16 গুণ	Ο.	
261	40 N ওজনের বস্তুকে মেঝে থেকে 2 m	উঁচুতে 2 s ধরে	ৰ রাখতে কা	জর পরিমাণ হবে	[
	(ক) 0 J	0	(켁)	40 J	0	
	(গ) 120 J	0	(ঘ)	240 J	0	
291	পাম্পের সাহায্যে একটি ছাদে পা <mark>নির ট্যা</mark> য়ে	ৰু 100 s সময়ে	1000 kg 🕈	<mark>শানি ওঠানো</mark> যায়	। ট্যাঙ্কের পা	ানির গড় উচ্চতা
	20 m হলে পাম্পের ক্ষমতা কত ?					
	(ক) 0.98 kW	0	(켁)	1.46 kW	0	
	(গ) 1.96 kW	0	(ঘ)	2.64 kW	0	
201	কাজের পরিমাণ সবচেয <mark>়ে বেশি</mark> হয় যখন প্র	যুক্ত বল ও সর	ণের মধ্যে কে	াণের মান—	ग]	ন. বো. ২০১৬]
	(ক) 0°	0	(켁)		0	
	(গ) 90°	0		30°	0	
1951	$2 \ \mathrm{N} \ \mathrm{m}^{-1}$ স্প্রিং ধ্রুবকের \mathbf{u} কটি আদর্শ স্	প্রং-এর দৈর্ঘ্য স	নাম্যাবস্থা থে	ক 0.1 m <mark>বৃদ্ধি ব</mark>	করলে স্প্রিং-	এর বিভব শক্তি
	কত বৃদ্ধি পাবে ?					
	((0	(켁)	0.001 J	0	
	(গ) 1 J	Ore		0.01 J	0	
२०।	~		। অপর এক	ব্যক্তি একই বস্থু	কে 60 s-এ	একই উচ্চতায়
	তুলতে পারে। তাদের কাজের অনুপাত হবে					
	(本)1 8 2	· ·) 1 8 1			0
	(키) 2 8 1	· · ·). 4 8 1			0
२२ ।						া. বো. ২০১৬]
				র গতিশক্তি বেশি		0
	(গ) উভয়ের গতিশক্তি সমান					0
२२।	কোনো প্রক্রিয়ায় মোট প্রদন্ত শক্তি E_{in} এর	একটি অংশ ক	যিকর শক্তি u	-তে রূপান্তরিত হ		-
	হয়। প্রক্রিয়াটির দক্ষতা কত ?		147		ច	া. বো. ২০১৫]
	$(\mathbf{\bar{o}}) \frac{u-W}{E_{in}} \times 100\% \bigcirc$	(খ)	$\frac{W}{E_{in}} \times 100$	%	0	
	$(\eta) \frac{u}{E_{in}} \times 100\%$ O	(ঘ)	$\frac{u+W}{E_{in}} \times 1$	100%	0	
२७।	অসংরক্ষণশীল বলের উদাহরণ কোনটি ?				[রা	া. বো. ২০১৫]
	(ক) ঘৰ্ষণ বল 💦 🔿	(খ)) বৈদ্যুতিক বৰ	ল	0	
	(গ) চুম্বক বল 🛛 🔿	. ,	অভিকৰ্ষজ ব		0	

কাজ, শক্তি ও ক্ষমতা

28 1	বল ও সরণের মধ্যবর্তী কোণ কত হলে কার্ভ	ন শূন্য হ	হবে ? রা. বো. ২০১	৫: য. বো. ২	০১৬; সি. বো. ২০১৫
					রুয়েট ২০১০–২০১১]
	(本) 60° O		(켁) 90°	0	
	(গ) 120° ^〇		(ম) 180°	0	
201	পরিবর্তনশীল বল দ্বারা কৃতকাজ হলো—				[কু. বো. ২০১৫]
	f_{c}		x_{f}		
	$(\mathbf{\bar{\Phi}}) \mathbf{W} = \int_{\mathbf{F}}^{f} \overrightarrow{\mathbf{F}} \cdot d\overrightarrow{\mathbf{s}} \qquad \bigcirc$		$(\mathfrak{A}) \mathbf{F} = \int_{0}^{x} F(x) dx$	0	
	i		x_i		
	(গ) $W = GMm\left(\frac{1}{r_b} - \frac{1}{r_a}\right)$ O		$(\mathfrak{V}) W = \int_{0}^{x} F dx$	0	
			0		
२७ ।	বল ও সরণের মধ্যবর্তী কোণ $ heta$ হলে বলের	বিরুদ্ধে	কাজ বা ঋণাত্মক কাজের শা	ৰ্ত হবে— [চ	.বো. ২০১৫, ২০১৭;
					কু. বো.২০১৬]
	(\overline{a}) 180° ≥ θ > 90° °		(♥) 180° ≥ θ≥90°	0	
	(গ) 180° ≤ θ > 90° [○]		(ম) 180° ≤ <i>θ</i> ≤ 90°	0	
291	100 kg ভরের একটি বস্তুকে ক্রেনে <mark>র সাহা</mark>	য্যে 10	cm s ⁻¹ বেগে ছাদের উপর	ওঠালে ক্রেন্দে	র ক্ষমতা কত ?
					[চ. বো. ২০১৫]
	(本) 0.98 W O		(켁) 10 W	0	
	(키) 98 W 이		(픽) 9800 W	0	
281		ঘুরালে ব	কাজের পরিমাণ হবে—		[সি. বো. ২০১৫]
	(ক) সর্বোচ্চ 🔿		(খ) ঋণাত্মক	0	
	(গ) শূন্য		(ঘ) ধনাত্মক	50	
221		m s ⁻¹		🔘 🚺 🚺 🖉	কেল ২০১৭–২০১৮]
	(ক) 25 J ^O		(켁) 50 J ^O		
	(키) 100 J ^〇		(되) 500 J	0	
001	বলের দ্বারা কাজ বা ধনাত্মক কাজ হয় যদি—				[ব. বো. ২০১৫]
	(ক) বল প্রয়োগে সরণ শূন্য হয়	0	(খ) বস্তু সমদ্রুতিতে বৃত্তাব	গর পথে ঘরে	0
	(গ) বল ও সরণের মধ্যবর্তী কোণ 90° হয়	0	(ঘ) বল ও সরণের মধ্যবর্ত		চয় ০
0)1	বল ও সরণের মধ্যবর্তী কোণ 0° হলে, কাজে	ন্ব পরিম		A GALL 2.0 -	
	(ক) শূন্য	0	(খ) সর্বনিম্ন		[সি. বো. ২০১৫] ০
	(গ) সর্বোচ্চ	0	(ঘ) অসীম		0
৩২।	15 ওয়াট ক্ষমতা বলতে কী বোঝায় ?		(1) 4114		[ব. বো. ২০১৫]
	(ক) 1 সেকেন্ডে 15 জুল কাজ	0	(খ) 3 সেকেন্ডে 5 জুল ক	ক	0
	(গ) 5 সেকেন্ডে 3 জুল কাজ	0	 (ম) 15 সেকেন্ডে 1 জুল হ 		0
9 91	কোনটি সংরক্ষণশীল বল ?		(4) 13 CALAGE 1 90	410	
			0		[ঢা. বো. ২০১৬]
	(ক) বায়ুর বাধা		০ (খ) তড়িৎ বল		0
	(গ) ঘর্ষণ বল		০ (ঘ) সান্দ্রবল		0

	(i) এর উপর কোনো কাজ হয় না			
	(ii) এর উপর কোনো বল ক্রিয়া করে না			
	(iii) এর বেগ অপরিবর্তিত থাকে না			
	নিচের কোনটি সঠিক ?			
	(क) i ও iii	0	(খ) i ও ii	0
	(1) ii s iii	0	(घ) i, ii ও iii	0
961	ক্ষমতার একক			[দি. বো. ২০১৬]
out				
	(i) J s ⁻¹ (ii) watt (iii) N m s ⁻¹ নিচের কোনটি সঠিক ?			
	(क) i ও ii	0	(খ) i ও iii	0
	(१) I ଓ II (१) II ଓ III	0	(되) i, ii ও iii	0
051				[সি. বো. ২০১৬]
	(i) বস্তু সমবেগে গতিশীল থাকলে			
	(ii) বস্তু সমত্ব্ <mark>বণে গতিশী</mark> ল থাকলে			
	(iii) বস্তুর উপর প্ <mark>রযুক্ত কেন্দ্র</mark> মুখী বল থাকলে			
	নিচের কোনটি সঠি <mark>ক ?</mark>			0
	(本) i	0	(খ) i ও ii (ঘ) i, ii <mark>ও iii</mark>	0
	(ग) і ଓ ііі	0	(4) 1, 11 9 111	0
ଏବ ।	অদ্রির মতে— (i) কোনো বল দ্বারা কৃত <mark>কাজ বল</mark> ও সরণের অন্তর্ভুৎ	<u>হ</u> কোণের উ	উপর নি <mark>র্ভরশীল</mark> নয়	
	(ii) বস্তুর বেগ তিনগুণ হলে গ <mark>তিশক্তি নয়গুণ</mark> হয়ে য	বে		
	(iii) নির্দিষ্ট পরিমাণ কাজ করার ক্ষেত্রে ক্ষমতা সময়ে		তিক	
	নিচের কোনটি সঠিক ?	0	(nt) ::	0
		0	(빅) ii (티) i, ii ଓ iii	
৩৮।	(গ) ii ও iii কোনো বল দ্বারা কৃত কাজ—	U	(1) 1, 11 - 111	[দি. বো. ২০১৭]
		(iii) গতিশ	ক্তির পরিবর্তনের সমান	
	নিচের কোনটি সঠিক ?			
	(本) i ଓ ii	0	(খ) i ও iii (ঘ) i, ii ও iii	0
1051	(গ) ii ও iii সংৱক্ষণশীল বল হলো—	0	(4) 1, 11 8 111	[দি. বো. ২০১৫]
৩৯।	 (i) মহাকর্ষ বল (ii) আদর্শ স্প্রিং বল (iii) স 	ন্দ্র বল		
	নিচের কোনটি সঠিক ?			
	(で) i ଓ ii (で)	(খ) i ও	iii	0
	(গ) ii ও iii O	(ম) i, ii	s iii	0

পদার্থবিজ্ঞান-প্রথম পত্র

৩৬৮

৩৪। একটি বস্তু যদি সমদ্রুতিতে বৃত্তাকার পথে ঘুরে—

	কাজ	গ, শক্তি	ত ও ক্ষমতা				৩৬৯
801		(iii)	যান্ত্ৰিক শক্তি			[দি. বো.	২০১৫]
	(本) i ଓ ii 〇		(খ) i ও			0	
	(키) ii ଓ iii O		(५) I С (घ) i, ii			0	
851			(4) 1, 11	U III		কি বো	2026]
	(i) বস্তুর উপর বল প্রয়োগে উল্লম্ব দিকে সরণ	হলে				12. 611.	(03()
	(ii) यपि $\cos \theta = 0$						
	(iii) বস্তুর উপর বল প্রয়োগে কোনো সরণ না	ঘটলে					
;	নিচের কোনটি সঠিক ?						
	(ক) i ଓ ii		(খ) i ও i	lii		0	
	(키) ii ଓ iii O		(য) i, ii			0	
	"একটি হাতুড়ির ভর 1kg। এটি 10 m s ⁻¹	1 বেগে	চলে একা	ট পেরেকের মাথায়	আঘাত ক	রল। এতে গে	<u>ধরেকের</u>
	সরণ হলো 2cm" ।					কু. বো. :	२०३१]
8२ ।	কতক্ষণ হাতুড়িটি পেরেকের সংস্পর্শে ছিল r (ক) 4×10^{-3} s		0			-	
	$(\sqrt[4]{}) 4 \times 10^{-3} s$ $(\sqrt[6]{}) 1 \times 10^{-3} s$			(텍) 2 × 10 ⁻³ s (틱) 0.25 × 10 ⁻	3.0	0	
801	হাতুড়ি দ্বারা সম্পাদিত কাজ কত?		Ū	(4) 0.25 × 10	- 5	Ŭ	
	(本) 100 J		0	(켁) 50 J		0	
	(키) 10 J		0	(픽) 0.2 J		0	
	20 kg ভরের একজন বালক প্র <mark>তিটি</mark> 25 cm উত্তর দাও :	উঁচু 2	0টি সিঁড়ি 1	0 s-এ উঠতে পারে	। নিম্নোক্ত	88 ও ৪৫ না	ং প্রশ্নের
88	বালকটি কর্তৃক কৃত কাজের পরিমা <mark>ণ ক</mark> ত _? 🤇	×.					
	(ক) 900 J		0	(켁) 980 J		0	
	(গ) 1000 J		orn	(国) 1080 J		0	
801					1		
	(•) 90 W		0	(켁) 98 W		0	
	(키) 100 W		0	(픽) 108 W		0	
	একটি কণার উপর $\vec{F} = (2\hat{i} + 3\hat{j} - \hat{k}) N$	ৰন্দ্ৰ হা		• /			0.0 70
	থ্রবের উত্তর দাও।	ৰণা ব্ব৫	SIC1 43110	s r = (1 + j + K)) m শরণ		
				5.		[য. বো. ২	(0)()
841	কৃতকাজের মান কত ?	0		_		0	
	(本) √3 J	0	(খ) √14	J		0	[.] .
	(গ) 4 J	0	(ম) 6 J	X		0	
891	দি ও r এর মধ্যবর্তী কোণ কত ?						. • .
	(ক) 22.20°	0	(켁) 51.8	38°		0	
	(গ) 81.84°	0	(ম) 84.5	53°		0	

পদার্থ-১ম (হাসান) -২৪(ক)

 $L^{1,\dots,1} = 1 L^{1,\dots,1}_{m,m} = m^{1,m}$

পদার্থবিজ্ঞান-প্রথম পত্র

୬୧୦

	*			
861	একটি কণার ভরবেগ p । কণাটির গতিশক্তি দ্বি	গুণ করা হ	লে এর নতুন ভরবেগ কত হবে	গ [ঢা. বি. ২০১২–২০১৩]
	$(\mathbf{a}) \sqrt{2}p$	0	(켁) 2p	0
	(গ) 4 p	0	(직) 8p	0
8२।	~ <		র সর্বোচ্চ বিন্দু A থেকে একটি	বস্তু মসৃণভাবে গড়িয়ে 10 s
	পরে B বিন্দুতে আসল। ভূমি হতে A-এর উচ্চ	তা কত ?		[চুয়েট ২০১৪–২০১৫]
	(ক) 212.25 m	0	(켁) 122.5 m	0
	(গ) 368.48 m	0.	(ঘ) কোনোটিই নয়	0
001	5 5			
	করতে পারে। পাম্প এর অশ্বক্ষমতা নির্ণয় কর			১৫; কুয়েট ২০০৯–২০১০]
	(•) 5.1 hp	0	(켁) 51.28 hp	0
- 4	(키) 6.87 hp	0	(ঘ) কোনোটিই নয়	0
621		n বৃদ্ধি কর		ণ্ [কু. বি. ২০১২–২০১৩]
	(本) 22.5 N cm ⁻¹	0	(켁) 25 N m	0
	(1) 250 N m ⁻¹	0	(직) 250 N cm	
৫२ ।	~			
	কত m উচ্চতা হতে <mark>বস্তুটি</mark> কে ফেলে দেয়া হয়ে	গাহুল ?		বি. প্র. বি. ২০১৪–২০১৫] ০
	(本)15		(켁) 25	0
6.e 1	(গ) 35 কেটি মটৰ 100 প্ৰদীৰ কণ গোৰে 5 মি	100 1	(ঘ) 45	Ū.
<u>୯</u> ७ ।	একটি মটর 120 m গভীর কূপ থেকে 5 মিনি থ	400 400 1	-	৭–২০০৮, ২০১৩–২০১৪]
	(本) 3 hp	0	(책) 2.8 hp	0
	(ヤ) 5 hp (ヤ) 2.5 hp	0	(직) 2.3 hp (직) 2.1 hp	0
681	(৭) 2.5 mp 10 N বল প্রয়োগে একটি <mark>গাড়িকে</mark> 100 m ম	দরাতে কত		ণের মধ্যবর্তী কোণ 60°।
				[বুয়েট ২০১৩–২০১৪]
	(香) 100 joule	0	(켁) 1000 joule	0
	(গ) 500 joule	0	(꾀) 50 joule	0
661	40 N ওজনের বস্তুকে মেঝে থেকে 3 m উঁচ	তে 2 সে		াণ হবে—
	e ter e se training i training and an			[বুয়েট ২০১১–২০১২]
	(本) 0 J	0	(켁) 49 J	0
	(গ) 120 J	0	(ম) 240 J	0
<u> </u>	পৃথিবী পৃষ্ঠ হতে 5 km উপরে কিছু মেঘ ভো			
	mm গভীরতার পানি সৃষ্টি করতে পারে। উক্ত	পানিকে আ	বার মেঘে পরিণত করতে কত	
				[কুয়েট ২০১৫-২০১৬]
	(本) 49×10 ¹¹ J	0	(켁) 49 × 10 ⁸ J	0
	(গ) $4.9 \times 10^{11} \text{ erg}$	0	(되) 10 ⁸ J	0

পদার্থ-১ম (হাসান) -২৪(খ)

কাজ, শক্তি ও ক্ষমতা

691		ত পড়ে এ	বং বলটির 20% শক্তি মেঝের	সাথে প্রতিঘাতে হ্রাস পায়,				
	তবে বলটি মেঝেতে বাড়ি খেয়ে কত উচ্চতায়	বে বলটি মেঝেতে বাড়ি খেয়ে কত উচ্চতায় উঠবে ?						
	(क) 50 m	0	(*) 56 m	0				
	(키) 61 m	0	(픽) 64 m	0				
ሮ ৮	নিজ ঘূর্ণন অক্ষের সাপেক্ষে দুটি বস্তুর জড়তার	ৰামক য	থাক্রমে 1 এবং 21। যদি তাদে	র ঘূর্ণন গতিশক্তি সমান হয়,				
	তবে তাদের কৌণিক ভরবেগের অনুপাত কত	?		[চুয়েট ২০১৪–২০১৫]				
	(ক) 1 ፡፡ 2	0	(켁) $\sqrt{2}$: 1	0				
	(१) 1 $\circ \sqrt{2}$	0	(박) 2 8 1	0				
621								
	? [রুয়েট ২০১৪–২০১৫]							
	(ক) 0.396 hp	0	(켁) 0.496 hp	0				
	(1) 0.596 hp	0	(v) 0.296 hp	0				
501		At 2	(1) 0.250 np	[বুয়েট ২০১৩–২০১৪]				
	(ক) ভর 3 <i>M</i> এবং বেগ <i>V</i>	0	(খ) ভর 3M এবং বেগ 2V	0				
	(গ) ভর 2M এবং বেগ 3V	0		0				
531			(ম) ভর <i>M</i> এবং বেগ 4 <i>V</i>					
021	25 N वल कारना स्थिংকে টেনে 10 cm वृष्टि	ধ বন্ধে । ।	খ্রংকে 8 cm অসারিত করলে ব					
	(ক) 0.8 J	0		[চুয়েট ২০১৩–২০১৪]				
		0	(켁) 0.8 N m	Ŭ,				
	(গ) (ক) ও (খ) উভয়ই		(ঘ) কোনোটিই নয়					
७२।								
		0		[চুয়েট ২০১০–২০১১]				
	() 10 m		(켁) 25 m	0				
	(1) 28 m	0	(ঘ) কোনোটিই নয়	0				
৬৩।	200 g ভরের একটি বস্তু 10 m উচ্চতা থেকে	নিচে পড়	ছে। ভূ-পৃষ্ঠ স্পর্শ করা <mark>র পূর্ব মু</mark> হূ					
	?		110.	[কুয়েট ২০০৮–২০০৯]				
	(本) 196 J	0	(켁) 19.6 J	0				
	(1) 19.6 × 10 ³ J	0	(키) 19.6 × 10 ⁻³ J	. 0				
681	কোনো বস্তুর গতিশক্তি 300% বৃদ্ধি করা হলে,	ানো বস্থুর গতিশক্তি 300% বৃদ্ধি করা হলে, উক্ত বস্তুর ভরবেগ বাড়বে—						
	(ず) 100%	0	(켁) 150%	O P. Supp				
	(키) 200%	0	(ম) 400%	0				
501	একটি বন্দুকের গুলি কোনো দেয়ালের মধ্যে 0.	.05 m නැ		ায়। গুলিটি দেয়ালের মধ্যে				
	আর কত দূর প্রবেশ করতে পারবে ?			[কুয়েট ২০১৭–২০১৮]				
. ×	(ক) 1.67 cm	0	(켁) 0.02 m	0				
	(키) 1.33 cm	0	(ག) 0.022 m	0				
561	1 J গতিশক্তির কোনো বস্তুর গতির বিপরীতে j	। N বল প্র	ায়োগ করা হলে বস্তুটি কতদূর অ	গ্রসর হয়ে থেমে যাবে ?				
X.				[রা. বি. ২০০৮–২০০৯]				
	((()) 1m	0	(켁) 10 m	0				
	$(\eta) \frac{1}{10} m$	0	(ঘ) কোনোটিই নয়	0				

৩৭১

\$

591			p					
			10 m					
	5 N							
		8 1						
	Л	01						
	চিত্রানুযায়ী 5 N ওজনের একটি ব্লককে	10 সে. এ <i>A</i> থে	াকে B তে নিতে প্রযুক্ত ক্ষমতা–	— [অভিন্ন প্রশ্ন ২০১৮]				
	(ক) 3 W	0	(켁) 4 W	0				
	(গ) 5 W	0	(픽) 6 W	0				
	নিচের উদ্দীপকের আলোকে ৬৮ নং ও ৩							
	P_1 ও P_2 ক্ষমতাবিশিষ্ট দুটি যন্ত্র যথাত্র							
	থেকে 1.5 m উচ্চতায় উঠাতে পারে। [$g = 9.8 \text{ m s}^{-2}$] [মাদ্রাসা বোর্ড ২০১৭]							
66 1	P_1 ক্ষমতাসম্পন যন্ত্রের কাজের পরিমার্থ	ণ কও জুল ? ০	(**) 20	0				
	(本) 15	0	(켁) 30	0				
	(গ) 147 কোন সম্পর্কটি সঠিক ?	Ŭ	(되) 200					
<u> </u>	-	0		0				
	$(\overline{\Phi}) P_1 = \frac{P_2}{2}$		$(\triangleleft) P_1 = P_2$					
	(গ) $P_1 > P_2$		$(\P) P_1 > 2P_2$	0				
901	নিচের কোনটি ক্ষমত <mark>ার মা</mark> ত্রা ?			[মাদ্রাসা বোর্ড ২০১৭]				
	(本) MLT-2	0	(박) ML ² T-2	0				
	(키) ML ² T-3	0	(직) MLT-1	0				
921	একটি বস্তুর রৈখিক ভরবে <mark>গ 50%</mark> বৃদ্ধি	করলে গতিশক্তি	বৃদ্ধি পায় কত १	[ঢা. বো. ২০১৭]				
	(ず) 25%	Oph	(খ) 50%	0				
	(約) 125%	0	(직) 225%	0				
	উদ্দীপক হতে ৭২ নং ও ৭৩ নং প্রশ্নের	উত্তর দাও :		[ঢা. বো. ২০১৭]				
	একটি বস্তু 20 m উচ্চতা থেকে ভূমিদ		$=10 \text{ m s}^{-2}$]					
१२।	এটি কত বেগে ভূমিতে আঘাত করবে	?						
	((0	(켁) 20 m s ⁻¹	0				
	(키) 200 m s ⁻¹	0	(픽) 400 m s ⁻¹	0				
901	পড়ন্ত অবস্থায় ভূমি হতে 5 m উঁচুতে বি	াভবশক্তি ও গতিগ	গক্তির অনুপাত কোনটি ?					
	(本)1 % 2	0	(খ) 1 8 3	0				
	(গ) 1 8 4	0	(되) 2 8 1	0				
98	<u> </u>	ৰ্ঘি একটি ঢালু প		হ যে গতিশক্তি প্রাপ্ত হবে—				
		-1		[ব. বো. ২০১৭]				
	(() 0,49 J	0	(켁) 0.848 J	0				
	(গ) 1.225 J	0	(직) 2.45 J	0				
		an je e						

৩৭২

ଓବ ।

কাজ, শক্তি ও ক্ষমতা

961	$2~{ m kg}$ ভরের একটি বস্তুর ভরবেগ $2~{ m kg~m~s^{-1}}$ হলে গতিশক্তি কত হবে ?						[চ. বো. ২০১৭]			
	(ক)	1 J			0	(켁)]	l.5 J			0
	(গ) 2 J		0	(ঘ) 4						
୩୯ ।	স্প্রিং	ধ্রুবকের এ	কক কোনটি	?					[ঢা.	বো. ২০১৭]
	(ক)	$N m^2$			0	(খ) I	V m			0
	(গ)	N m ⁻¹			0		$M m^{-2}$			0
991							উচ্চতায় উঠ	ঠানো হয়। পাম্পের ক্ষমতা		
	70% কার্যকর হলে এর অশ্বক্ষমতা কত ?								०३१-२०३৮]	
		4.8×10		e é lég	0		516 hp			0
		5.7 × 10		6	0	্ (ম) ৫	5251 hp	<u> </u>		0
୩৮ ।	10	m ডপর হ	ত 10 kg উ	চরের একাঢ	মুক্তভাবে প	দৃত্ত বস্তুর মা	টি থেকে 5	m উপরে মে		
	(ক)	490 J		-	0	(te) 1	00 T		াবুয়েত ২	०१०२०-२०१२]
		735 J			0	(খ) 1 (ঘ) 9				0.
991			কেন্দ্রের বা	ধর গ <mark>ভীরতা</mark>	20 m । প্রা			ানি অবশাই	টারবাইনের	ব্লেডের উপর
	পড়	ত হবে যাতে	ত এটি 0.5 M	MW বিদ্যুৎ	উৎপন্ন করতে	চ পারে ?				०४–२००२]
	(ক)	25×10^{2}	² kg	7	0		25×10^3 k	g		0
	(গ)	25×10^{4}	kg		0	(ম) 2	25×10^5 k	g	1	0
601			রা যথাক্রমে-						[বুয়েট ২০	০৯–২০১০]
	(ক)	LT-2 & 1	MLT ⁻²		0	(켁) N	/ILT-2 & 1	ML^2T^{-2}		0
		LT-2 & M			0		/ILT-2 & 1			0
631	250) kg ভরের	একটি বস্থু (ক্ <mark>রেনের</mark> সাহা	য্যে 0.1 m	s ⁻¹ ধ্রুব বে	গে উপরে উঠ	গনো হ <mark>লো।</mark>	ক্রেনের ক্ষম	তা কত ?
					1				[ঢ]	বো. ২০১৯]
	(ক)	24500 W	7		0	(켁) 2	500 W			0
	(গ)	245 W				(ঘ) 2	4.5 W			0
621	নিম্নে	র কোনটি শ	ক্তির একক	নয় ?					[지.	বো. ২০১৯]
	(季) kW h				0	(켁) N	Im	· O		
	(গ)	kg m s ⁻¹			0	(য) 🕅				0
বহুনির্ব	র্াচনি	প্রশ্নাবলির	উত্তরমালা	•						
১ ।(য)	and the second second	২ ৷(গ)	৩।(গ)	৪ ৷(ক)	৫।(ক)	৬।(গ)	৭।(খ)	৮ ৷(ক)	৯ ৷(ম্	১০ ৷(ক)
271(2		১২ ৷(খ)	১৩ ৷(গ)	১৪ ৷(গ)	১৫ ।(গ)	১৬।(ক)	১৭।(গ)	১৮ ৷(ক)	১৯ ৷(ঘ)	२०।(খ)
231(*	TRA AVERAGE AND A	२२।(ग)	২৩ ৷(ক)	২৪ ৷(খ)	২৫ ৷(খ)	২৬।(ক)	२१।(१)	২৮ ৷(গ)	<u>২৯ ৷(ক)</u>	৩০ ।(ঘ)
5) 10	Contra Desta and	৩২ ৷(ক)	৩৩ ৷(খ)	৩৪ ৷(ক)	৩৫ ৷(ঘ)	৩৬।(গ)	৩৭।(গ)	৩৮।(খ)	৩৯ ৷(ক)	80।(খ)
831(1	and the second second	8২।(ক)	৪৩।(খ)	88।(খ)	8৫।(খ)	8७।(१)	89।(খ)	৪৮। (ক)	৪৯। (খ)	৫০। (গ)
0310	-	৫২। (খ)	৫৩। (ঘ)	৫৪। (গ)	৫৫। (ক)	৫৬। (ক)	৫৭। (ম)	৫৮। (গ)	৫৯ ৷ (ম)	৬০। (গ)
531(COLUMN STREET, ST	৬২। (ক)	৬৩। (খ)	৬৪। (ক)	৬৫। (ক)	৬৬। (ক)	৬৭। (গ)	৬৮। (ঘ)	৬৯। (ক)	901(ग) १०1(ग)
931(৭২। (খ)	৭৩। (খ)	98 । (घ)	৭৫। (ক)	৭৬। (গ)	৭৭। (খ)	৭৮। (য)	৭৯। (ক)	৮০। (খ)
mil	T STORAGE AND	k) (st)								

৮১। (গ)

৮২। (গ)

পদার্থবিজ্ঞান-প্রথম পত্র

খ-বিভাগ:) সুজনশীল প্রশ্ন (CQ)

১। একজন নৌকার মাঝি নদীর স্রোতের বিপরীতে নৌকা চালাচ্ছিলেন। নদীর স্রোত এত বেশি ছিল যে, তিনি সারা রাত পরিশ্রম করেও নৌকা স্রোতের বিপরীতে কোনো দূরত্ব অতিক্রম করল না। এতে নৌকার মালিক ক্ষেপে গিয়ে বললেন, তুমি আজ কোনো পারিশ্রমিক পাবে না। কারণ তুমি কোনো কাজ করনি। মাঝি করুণ কণ্ঠে বললেন, আমি যে সারা রাত নৌকা বাইলাম সেটা কি কোনো কাজ নয় ? মালিক বললেন, না।

নিচের প্রশ্নগুলোর উত্তর দাও :

- ক. কাজ কী ?
- খ. বলের দ্বারা কাজ ও বলের বিরুদ্ধে কাজ ব্যাখ্যা কর।
- গ. একটি কণার উপর $\overrightarrow{F} = (6\hat{i} 3\hat{j} + 2\hat{k})$ N বল প্রয়োগ করলে কণাটির $\overrightarrow{r} = (2\hat{i} + 2\hat{j} \hat{k})$ m সরণ হয়। বল কর্তৃক সম্পাদিত কাজের পরিমাণ নির্ণয় কর।
- ম. ধ্রুব বল দ্বারা কৃতকাজের <mark>পরিমাণ নির্ণ</mark>য় কর এবং তা থেকে যুক্তি দিয়ে দেখাও যে, আসলে কে সঠিক মাঝি না নৌকার মালিক ? আসলে<mark>ই কী মা</mark>ঝি কোনো কাজ করেননি ?
- ২। ধরা যাক, পৃথিবী সূর্যের দ্বা<mark>রা প্রযু</mark>ক্ত বলের প্রভাবে সূর্যের চারদিকে বৃত্তাকা<mark>র পথে ঘু</mark>রছে। পৃথিবীর এই বৃত্তাকার গতির জন্য সূর্য কি কোন কাজ <mark>করছে</mark> ? শফিক সাহেব বললেন, না সূর্য কোনো কাজ ক<mark>রছে না</mark>। নিচের প্রশ্নগুলোর উত্তর দাও :

 - ক. স্প্রিং ধ্রুবক কাক<mark>ে বলে</mark> ?
 - খ.সংরক্ষণশীল বল ও অসংরক্ষণশীল বলের মধ্যে পার্থক্য উদাহরণসহ ব্যাখ্যা ক<mark>র।</mark>
 - গ, গতি শক্তির জন্য <mark>একটি</mark> রাশিমালা প্রতিপাদন কর ।
 - ঘ. উদ্দীপকে বর্ণিত প<mark>ৃথিবীর</mark> গতি ও সূর্যের কাজ সম্পর্কে শফিক সাহেবের মতে<mark>র পক্ষে</mark> বা বিপক্ষে যুক্তি দাও।
- ৩। ভূমি থেকে 4 cm উঁচু এ<mark>কখানা ব</mark>ইকে 40 cm উচ্চতায় ওঠানো হলো ।

নিচের প্রশ্নগুলোর উত্তর দাও :

- ক. ক্ষমতা কাকে বলে ?
- খ. বলের বিরুদ্ধে কাজ বলতে কী বুঝ ?
- গ. উদ্দীপকে উল্লেখিত বইখানিকে ওঠাতে কত কাজ করতে হয়েছে ?
- ঘ. এইরূপ 10 খানা বই একের উপর এক সাজিয়ে 40 cm উঁচু স্তম্ভ তৈরি করতে মোট কত কাজ করতে হবে গাণিতিক হিসেবের মাধ্যমে নির্ণয় কর ।
- ৪। একটি দালানের ছাদের সাথে দুটি মই লাগানো আছে। একটি মই-এর দৈর্ঘ্য 5 m এবং এটি অনুভূমিকের সাথে 30° কোণ উৎপন্ন করে। অপর মই-এর দৈর্ঘ্য 2.887 m এবং সেটি অনুভূমিকের সাথে 60° কোণ উৎপন্ন করে। 70 kg ভরের দুই জন নির্মাণ শ্রমিক মাথায় 20 kg বোঝা নিয়ে দুই মই দিয়ে ছাদে উঠলেন।
 - নিচের প্রশ্নগুলোর উত্তর দাও :
 - ক. বলের দ্বারা কাজ কী ?
 - খ. কাজকে দুটি ভেক্টর রাশির গুণফল হিসেবে সংজ্ঞায়িত কর।
 - গ. প্রথম শ্রমিক ছাদে ওঠার জন্য কত কাজ করেছেন ?
 - ঘ. উভয় শ্রমিকই যদি 6 সেকেন্ডে ছাদে ওঠেন তাহলে কে বেশি ক্ষমতা প্রয়োগ করেছেন গাণিতিক বিশ্লেষণের মাধ্যমে নির্ণয় কর ।

৫। মিতা 0.20 kg ভরের একখানা বইকে ঘরের মেঝে থেকে 1 m উঁচুতে তুলে হাত দিয়ে ধরে সমদ্রুতিতে ঘরের এক প্রান্ত থেকে 3 m দূরে অপর প্রান্তে নিয়ে গিয়ে ধীরে ধীরে মেঝেতে নামিয়ে দিলো।

নিচের প্রশ্নগুলোর উত্তর দাও :

ক. কৰ্ম দক্ষতা কী ?

51

খ. বলের দ্বারা কাজ ও বলের বিরুদ্ধে কাজের মধ্যে পার্থক্য কী ?

গ. মিতা বইটি তুলতে কত কাজ করলো ?

ঘ. মিতা বই তুলে নামানো পর্যন্ত অভিকর্ষ বলের জন্য মোট কত কাজ করলো গাণিতিক বিশ্লেষণের সাহায্যে নির্ণয় কর ।

 $M \longrightarrow r \qquad B \qquad C \qquad D$

চিত্রে A বিন্দুতে স্থাপিত M ভরের বস্তু B বিন্দুতে স্থাপিত m ভরের বস্তুকে মহাকর্ষ বলে আকর্ষণ করছে। $AC = r_1$ এবং $AD = r_2$ ।

নিচের প্রশ্নগুলোর উত্তর দাও :

ক. সংরক্ষণশীল বল কী ?

খ. বিভব শক্তি বলতে কী বুঝ ?

গ. M = 3 kg এবং m = 2 kg। তাদের মধ্যবর্তী দূরত্ব 2 m হলে তাদের মধ্যে ক্রিয়াশীল মহাকর্ষ বল কত ?

ঘ. *m* ভরের বস্তুকে C বিন্দু থে<mark>কে D</mark> বিন্দুতে সরাতে মহাকর্ষ বল দ্বারা কৃতকাজের রাশিমা<mark>লা প্রতি</mark>পাদন কর।

৭। একটি স্প্রিং এর স্প্রিং ধ্রুবক 10<mark>0 N m⁻¹।</mark> স্প্রিং-এর এক প্রান্ত একটি দৃঢ় অবলম্বনে আটকানো আছে। স্প্রিংটিকে প্রসারিত বা সংকুচিত করা যায়।

নিচের প্রশ্নগুলোর উত্তর দাও :

ক. স্থিতিস্থাপক বল কী ?

খ. স্প্রিং এর স্প্রিং ধ্রুবক 100 N m⁻¹ বলতে কী বুঝ ?

- গ. এই স্প্রিংটিকে 2 cm প্রসারিত করতে স্প্রিং বলের বিরুদ্ধে কত কাজ করতে হবে ?
- ঘ. গাণিতিক বিশ্লেষণের সাহায্যে দেখাও যে, একটি স্প্রিং এর মুক্ত প্রান্তের সমপরিমাণ প্রসারণ বা সংকোচনে স্প্রিং বলের বিরুদ্ধে একই পরিমাণ কাজ করতে হয় ।
- ৮। ভূ-পৃষ্ঠ থেকে $3.6 \times 10^4 \,\mathrm{km}$ উচ্চতায় থেকে একটি কৃত্রিম উপগ্রহ $3 \,\mathrm{km} \,\mathrm{s}^{-1}$ বেগে পৃথিবীকে আবর্তন করছে। পৃথিবীর ভর ও ব্যাসার্ধ যথাক্রমে $6 \times 10^{24} \,\mathrm{kg}$ এবং $6400 \,\mathrm{km}$ । উপগ্রহটির ভর $1000 \,\mathrm{kg}$ । $G = 6.67 \times 10^{-11} \,\mathrm{N} \,\mathrm{m}^2 \,\mathrm{kg}^{-2}$

নিচের প্রশ্নগুলোর উত্তর দাও :

ক. অভিকৰ্ষ বল কী ?

- খ. অভিকর্ষ বল দ্বারা কাজ কখন ধনাত্মক আর কখন ঋণাত্মক হয় ব্যাখ্যা কর।
- গ. কৃত্রিম উপগ্রহকে উদ্দীপকে উল্লেখিত উচ্চতায় প্রেরণ করতে অভিকর্ষ বলের বিরুদ্ধে কত কাজ করতে হয়েছে ?
- ঘ. কৃত্রিম উপগ্রহকে যদি আরো 1000 km বেশি উচ্চতায় প্রেরণ করা হতো তাহলে অতিরিক্ত কত কাজ করতে হতো গাণিতিক হিসাবের সাহায্যে বের কর।

পদার্থবিজ্ঞান-প্রথম পত্র

৯। 5 m s⁻¹ বেগে গতিশীল 50 kg ভরের কোনো বস্তুর উপর 100 N বল প্রযুক্ত হওয়ায় 20 s পরে বস্তুটি সর্বোচ্চ বেগ অর্জন করে।

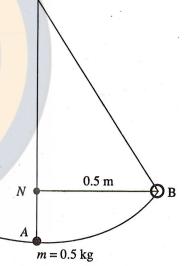
নিচের প্রশ্নগুলোর উত্তর দাও :

ক. গতিশক্তি কী ?

- খ. সংরক্ষণশীল বল ও অসংরক্ষণশীল বলের পার্থক্য বর্ণনা কর।
- গ. উদ্দীপকের বস্তুটি এই সময়ে কত দূরত্ব অতিক্রম করে ?
- ঘ. গাণিতিক বিশ্লেষণের সাহায্যে দেখাও যে, বস্তুটির উপর বল দ্বারা কৃতকাজ বস্তুটির গতিশক্তির পরিবর্তনের সমান ।
- ১০। 5 kg ভরের একটি বস্তুকে খাড়া উপরের দিকে নিক্ষেপ করা হলো। সর্বোচ্চ উচ্চতায় বস্তুর মোট শক্তি হলো 6002.5 J।

নিচের প্রশাগুলোর উত্তর দাও :

- ক, বিভব শক্তি কী ?
- খ. শক্তির নিত্যতার সূত্রটি বর্ণনা কর।
- গ. উদ্দীপকে উল্লেখিত বস্তুটিকে <mark>কত বেগে নিক্ষেপ করা হয়েছিল</mark> ?
- ঘ. গাণিতিক বিশ্লেষণের মাধ্যমে 32.5 m উচ্চতায় বস্তুটির গতি শক্তি ও বিভব শক্তি নির্ণয় করে দেখাও যে, মোট শক্তি ধ্রুব ।


১১। একটি সরল দোলকের ববের ভর 0.5 kg ও কার্যকর দৈর্ঘ্য 1.5 m।

ববটিকে উল্লম্ব রেখা হতে 0.5 m দূরে টেনে ছেড়ে দেওয়া হলো । নিচের প্রশ্নগুলোর উত্তর দাও :

- ক. সরল দোলন গতি কী ?
- খ. অভিকৰ্ষজ বিভ<mark>ব শক্তি</mark> বলতে কী বুঝ ?
- গ. *m* ভরের <mark>বস্তুকে প্রসঙ্গ</mark> তল থেকে *h* উচ্চতায় ওঠালে সঞ্চিত বিভব শক্তি হিসাব <mark>কর।</mark>
- ঘ. উদ্দীপকে উল্লেখিত বস্তুটির গতিপথের সর্বনিম্ন বিন্দুতে গতিশক্তি ও বেগ নির্ণয় কর।
- ১২। অভি ও তার কন্যা অদ্রি একত্রে দৌড়াচ্ছেন। কন্যার ভর মাতার ভরের অর্ধেক কিন্তু মাতার গতিশক্তি কন্যার গতিশক্তির অর্ধেক। মাতা তার বেগ 1 m s⁻¹ বৃদ্ধি করলে উভয়ের গতিশক্তি সমান হয়। নিচের প্রশ্নগুলোর উত্তর দাও :
 - ক. গতিশক্তি কী ?
 - খ. অভিকর্ষ বল সংরক্ষণশীল বল কেন ব্যাখ্যা কর।
 - গ. উভয়ের গতিশক্তি যখন সমান হবে তখন কার ভরবেগ বেশি হবে ব্যাখ্যা কর।
 - **ঘ. গাণিতিক বিশ্লেষণের মাধ্যমে উদ্দীপকে উল্লেখিত মাতা ও কন্যার আদি বেগ নির্ণয় কর**।
- ১৩। 20 m উঁচু দালানের ছাদ থেকে *m* ভরের একটি টেনিস বল গড়িয়ে মাটিতে পড়ে। বলটি যখন ভূমি স্পর্শ করে, তখন এর বেগ 22 m s⁻¹।

নিচের প্রশ্নগুলোর উত্তর দাও :

- ক. যান্ত্রিক শক্তির সংরক্ষণশীলতা কী ?
- খ. ঘর্ষণবল কেন সংরক্ষণশীল বল নয় ব্যাখ্যা কর।
- গ. m ভরের বস্তুকে h উচ্চতায় ওঠালে অভিকর্ষ বলের বিরুদ্ধে কত কাজ করতে হয় হিসাব কর।
- ঘ. শক্তির নিত্যতা সূত্র ব্যবহার করে উদ্দীপকে উল্লেখিত বস্তুটি ছাদ ত্যাগ করার মুহূর্তে কত বেগে গড়াচ্ছিল নির্ণয় কর।

১৪ । 30 m উচ্চতা থেকে একটি বস্তু বিনা বাধায় পড়ছে ।

নিচের প্রশ্নগুলোর উত্তর দাও :

ক. যান্ত্ৰিক শক্তি কী ?

- খ. বলের দ্বারা কাজ ব্যাখ্যা কর।
- গ. m ভরের বস্তু v বেগে গতিশীল হলে তার গতিশক্তির জন্য একটি রাশিমালা নির্ণয় কর।
- য. উদ্দীপকে উল্লেখিত বস্তুর গতিশক্তি কোথায় তার বিভব শক্তির দ্বিগুণ হবে বের কর।
- ১৫। 10 m উঁচু থেকে 2 kg ভরের একখণ্ড পাথর নিচে পড়ার সময় ভূপৃষ্ঠকে স্পর্শ করার মুহূর্তে একটি বস্তুকে আঘাত করে দ্বিখণ্ডিত করে ফেললো ।

নিচের প্রশ্নগুলোর উত্তর দাও :

- ক. স্থিতিস্থাপক বল কী ?
- খ. স্প্রিংযুক্ত খেলনা গাড়িকে পেছন দিকে টেনে ছেড়ে দিলে গাড়িটি সামনের দিকে অগ্রসর হয় কেনঃ ব্যাখ্যা কর।
- পাথরের সম্পূর্ণ গতিশক্তি যদি বস্তুটিকে দ্বিখণ্ডিত করতে ব্যবহৃত হয়, তবে বস্তুটিকে ভাঙ্গতে কত শক্তি ব্যয় হয়েছিল ?
- ঘ. অন্য একটি বস্তুকে ভাঙ্গতে যদি এর এক-চতুর্থাংশ গতিশক্তির প্রয়োজন হয়, তবে বস্তুটি ভূ-পৃষ্ঠ থেকে কত উপরে থাকলে পাথর খণ্ডটি পড়ন্ত অবস্থায় তাকে ভেঙ্গে ফেলতে পারবে ?
- ১৬। সাথী 20 m উঁচু দালানের ছাদ থেকে 500 g ভরের একটি গোলক নিচে ফেলে দিলো। গোলকটি নিচে কাদামাটির মধ্যে 4 cm গভীরে প্রবেশ <mark>করে।</mark>
 - নিচের প্রশ্নগুলোর উত্তর দাও :
 - ক. কাজ-শক্তি উপপাদ্য বি<mark>বৃত ক</mark>র।
 - খ. গতিশক্তি ও ভরবেগের <mark>মধ্যে স</mark>ম্পর্ক স্থাপন কর।
 - গ. কত গতিশক্তি সহকারে <mark>বস্তুটি মা</mark>টিতে আঘাত করবে নির্ণয় কর।
 - য. গাণিতিক বিশ্লেষণের মাধ্যমে গোলকটিকে বাধাদানকারী গড় বলের মান নির্ণ<mark>য় কর।</mark>
- ১৭। 1000 kg ভরের একটি লিফট সর্বোচ্<mark>ড 80</mark>0 kg ভরের আরোহীদের নি<mark>য়ে উপরে</mark> উঠছে। 4000 N মানের একটি ধ্রুব ঘর্ষণ বল এর ঊর্ধ্বমুখী গতি ব্যাহত করে।

নিচের প্রশ্নগুলোর উত্তর দাও :

ক. জুল কী ?

- খ. কোনো ইঞ্জিনের কর্ম দক্ষতা 80% বলতে কী বুঝ ?
- গ. লিফটটিকে 15 m উপরে ওঠাতে কত শক্তি সরবরাহের প্রয়োজন ?
- ঘ. লিফটটিকে 3 m s⁻¹ সমন্দ্রুতিতে উপরের দিকে ওঠাতে মোটরের সর্বনিম্ন কত ক্ষমতা দরকার তা নির্ণয়ের জন্য প্রয়োজনীয় সমীকরণ প্রতিপাদন করে ক্ষমতা হিসাব কর।
- ১৮। একটি পানিপূর্ণ কুয়ার গভীরতা এবং ব্যাস যথাক্রমে 10 m এবং 4 m।

নিচের প্রশ্নগুলোর উত্তর দাও :

- ক. এক অশ্বক্ষমতা বলতে কী বুঝ়? .
- খ. ওয়াট কী? অশ্বক্ষমতার সাথে এর সম্পর্ক কী?
- গ. উদ্দীপকে উল্লেখিত কুয়াটিকে পানি শূন্য করতে হলে কত কিলোগ্রাম পানিকে কুয়া থেকে বের করে নিতে হবে ?
- ঘ. যে পাম্প 20 মিনিটে কুয়াটিকে পানিশূন্য করতে পারে তার ক্ষমতা নির্ণয় কর।

পদার্থবিজ্ঞান-প্রথম পত্র

১৯। একটি দালানের ছাদের সাথে লাগানো 5 m লম্বা একটি মই অনুভূমিকের সাথে 30° কোণ করে আছে । 60 kg ভরের এক ব্যক্তি 20 kg ভরের বোঝা নিয়ে ছাদে ওঠেন।

নিচের প্রশ্নগুলোর উত্তর দাও :

- ক. ক্ষমতা কী ?
- খ. বলের বিরুদ্ধে কাজ বলতে কী বুঝ ?
- গ. ছাদে ওঠার জন্য তিনি অভিকর্ষ বলের বিরুদ্ধে কত কাজ করলেন ?
- ঘ. তিনি যদি 10 সেকেন্ডে ছাদে ওঠেন তবে কত অশ্ব ক্ষমতা প্রয়োগ করলেন নির্ণয় কর । তিনি যদি হেলানো মই ব্যবহার না করে খাড়া মই বেয়ে 10 সেকেন্ডে ছাদে ওঠেন তাহলে কত অশ্ব ক্ষমতা প্রয়োগ করতেন গাণিতিক হিসাবের মাধ্যমে দেখাও ।
- ২০। বিপুলদের বাসার ভূগর্ভস্থ পানির রিজার্ভারের দৈর্ঘ্য 4 m , প্রস্থ 3 m এবং গভীরতা 2m। রিজার্ভারটি অর্ধেক পানিপূর্ণ আছে। ভূপৃষ্ঠ থেকে 20 m উপরে ছাদের ট্যাংকে পানি তোলার জন্য 10 kW এর একটি পাম্প ব্যবহার করা হয় । পাম্পটির দক্ষতা অবশ্য 80 % ।

নিচের প্রশ্নগুলোর উত্তর দাও :

- ক. কৰ্ম দক্ষতা কী ?
- খ. বলের বিরুদ্ধে কাজ বলতে কী বুঝ ?
- গ. রিজার্ভার থেকে 1 kg পানি ছাদে ওঠাতে কত শক্তি ব্যয় হবে ?
- ঘ. রিজার্ভার পরিষ্ণার ক<mark>রার জ</mark>ন্য সম্পূর্ণ পানি ছাদে ওঠাতে কত সময় লাগবে গাণি<mark>তিক বি</mark>শ্লেষণের মাধ্যমে নির্ণয় কর।

গ-বিভাগ :) সাধারণ প্রশ্ন

- ১। দৈনন্দিন জীবনে কাজ সম্পর্কিত ধারণা আর পদার্থবিজ্ঞানে কাজ সম্পর্কিত ধারণার মধ্যে পার্থক্য কী ?
- ২। কাজ বলতে কী বুঝ ? উদাহ<mark>রণসহ</mark> ব্যাখ্যা কর।

৩। কাজ কী ? দেখাও যে, $W = \overrightarrow{F} \cdot \overrightarrow{s}$ । [মাদ্রাসা বোর্ড ২০১৫]

- 8 । ধ্রুব বল কর্তৃক কাজের পরিমাণ নির্ণয় কর এবং দেখাও যে, $W = \overrightarrow{F}$. \overrightarrow{s}
- ৫। ভেক্টর সমীকরণ ব্যবহার করে কাজের সংজ্ঞা কীভাবে দেওয়া হয় ?
- ৬। বল ও সরণ ভেক্টর রাশি হলেও তাদের দ্বারা সৃষ্ট কাজ স্কেলার রাশি— ব্যাখা কর। [অভিনু প্রশ্ন (ক সেট) ২০১৮]
- ৭। কাজের মাত্রা বের কর।

৮। জুল কাকে বলে ?

- ৯। বলের দ্বারা কাজ বা ধনাত্মক বলতে কী বোঝায়? ব্যাখ্যা কর। [সি. বো. ২০১৫]
- ১০। পড়ন্ত বস্তুর উপর অভিকর্ষজ বল দ্বারা কৃতকাজ ধনাত্মক—ব্যাখ্যা কর। [দি. বো. ২০১৭]
- ১১। বলের বিরুদ্ধে কাজ বা ঋণাত্মক কাজ বলতে কি বোঝায় ? ব্যাখ্যা কর। [দি. বো. ২০১৫; ব. বো. ২০১৯]
- ১২। পৃথিবী সূর্যের চারদিকে ঘুরছে কিন্তু কোনো কাজ করছে না কেন ? ব্যাখ্যা কর। [অভিনু প্রশ্ন (খ সেট) ২০১৮]

১৩। কেন্দ্রমুখী বল দ্বারা কৃতকাজ ব্যাখ্যা কর। [চ. বো. ২০১৭]

- ১৪। বৃত্তাকার পথে কেন্দ্রমুখী বল দ্বারা কৃতকাজ শূন্য কেন ? ব্যাখ্যা কর। [দি. বো. ২০১৯]
- ১৫। পরিবর্তনশীল বল দ্বারা কৃতকাজের রাশিমালা নির্ণয় কর।
- ১৬। বল-সরণ লেখচিত্রের সাহায্যে পরিবর্তনশীল বল কর্তৃক কৃতকাজের রাশিমালা নির্ণয় কর।

- ১৭। বল-সরণ লেখচিত্র হতে স্প্রিং সম্প্রসারণে কৃতকাজের পরিমাণ পাওয়া যায়—ব্যাখ্যা কর। [কু. বো. ২০১৭]
- ১৮। দেখাও যে, $W = \int \overrightarrow{F} \cdot d\overrightarrow{s}$ রূপে কাজকে প্রকাশ করা যায়।
- ১৯। প্রত্যায়নী বল কাকে বলে ? [ব. বো. ২০১৯]
- ২০। স্প্রিং ধ্রুবক কাকে বলে ? [কু. বো. ২০১৫]
- ২১। স্প্রিং ধ্রুবকের তাৎপর্য ব্যাখ্যা কর। [য. বো. ২০১৯]
- ২২। একই স্প্রিং ধ্রুবক বিশিষ্ট দুটি স্প্রিংকে সমান্তরাল সমবায়ে যুক্ত করলে সমবায়ের স্প্রিং-ধ্রুবকের পরিবর্তন হবে কীনা। ব্যাখ্যা কর। [চ. বো. ২০১৭]
- ২৩। "বল ধ্রুবক 2500 N m⁻¹"—এর অর্থ ব্যাখ্যা কর। [চ. বো. ২০১৯]
- ২৪। একটি স্প্রিং বলের বিপরীতে কাজের রাশিমালা নির্ণয় কর।
- ২৫। প্রত্যায়নী বল দ্বারা কৃত কাজ কখন ঋণাত্মক হবে—ব্যাখ্যা কর। [য. বো. ২০১৭]
- ২৬। অভিকর্ষ বলের বিপরীতে কাজের রাশিমালা বের <mark>কর</mark>।

২৭। শক্তির সংজ্ঞা দাও।

- ২৮। কিলোওয়াট-ঘণ্টা কাকে বলে ?
- ২৯। গতিশক্তি বলতে কী বুঝ ? দেখা<mark>ও যে, m</mark> ভরের কোনো বস্তু v বেগে গতিশীল হ<mark>লে তার</mark> গতি শক্তি $rac{1}{2}mv^2$ ।
- ৩০। দেখাও যে, নির্দিষ্ট ভরের কোনো বস্তুর গতিশক্তি এর বেগের বর্গের সমানুপাতিক।
- ৩১। বস্তুর গতিশক্তি এবং ভরবেগে<mark>র মধ্যে</mark> সম্পর্কযুক্ত সমীকরণটি প্রতিপাদন কর।
- ৩২। একটি হালকা ও একটি ভার<mark>ী বস্তুর</mark> ভরবেগ সমান হলে কোনটির গতিশক্তি বেশী হবে—<mark>ব্যাখ্যা</mark> কর। [ব. বো. ২০১৫]
- ৩৩। কাজ-শক্তি উপপাদ্যটি বিবৃত<mark> কর। (</mark>ব. বো. ২০১৫; সি. বো. ২০১৬; অভিন্ন প্রশ্ন (ক সে<mark>ট) ২</mark>০১৮; য. বো. ২০১৯]
- ৩৪। বিভব শক্তি বলতে কী বুঝ ? অভিকর্ষজ বিভব শক্তির রাশিমালা নির্ণয় কর।
- ৩৫। একটি স্প্রিং-এর সংকোচন বা প্<mark>রসারণের</mark> জন্য সঞ্চিত বিভব শক্তির রাশিমালা নির্ণয় <mark>কর।</mark>
- ৩৬। স্প্রিংযুক্ত খেলনা গাড়িকে পেছন দি<mark>কে টেনে ছে</mark>ড়ে দিলে গাড়িটি সামনের দি<mark>কে অগ্রসর</mark> হয় কেন ? ব্যাখ্যা কর।

[য. বো. ২০১৯; কু. বো. ২০১৬]

- ৩৭। কোনো বস্তু কীভাবে স্থিতিশক্তি অর্জন করে ? ব্যাখ্যা দাও। [ঢা. বো. ২০১৯]
- ৩৮। গতিশক্তি ও বিভব শক্তির পার্থক্য নির্দেশ কর।
- ৩৯। সংরক্ষণশীল বল কাকে বলে ? [ঢা. বো. ২০১৭]
- ৪০। অসংরক্ষণশীল বল কাকে বলে ? [ব. বো. ২০১৫; য. বো. ২০১৯]
- ৪১। প্রমাণ কর যে, অভিকর্ষীয় বল সংরক্ষণশীল বল। [ঢা. বো. ২০১৬; দি. বো. ২০১৬ ; অভিন্ন প্রশ্ন (খ সেট) ২০১৮]
- ৪২। অভিকর্ষীয় বল অসংরক্ষণশীল বল নয়—ব্যাখ্যা কর। [য. বো. ২০১৫]
- ৪৩। ঘর্ষণ বল অসংরক্ষণশীল বল কেন ? ব্যাখ্যা কর। [চ. বো. ২০১৬; দি. বো. ২০১৭; অভিন্ন প্রশ্ন (ক সেট) ২০১৮]
- 88। সংরক্ষণশীল বল ও অসংরক্ষণশীল বলের মধ্যে পার্থক্য নির্দেশ কর।
- ৪৫। শক্তির নিত্যতার নীতি বিবৃত কর।
- ৪৬। যান্ত্রিক শক্তির নিত্যতা বা সংরক্ষণশীলতার নীতি বিবৃত কর। [য. বো. ২০১৭]
- ৪৭। শক্তির নিত্যতার নীতি ব্যবহার করে একটি উৎক্ষিপ্ত বস্তুর সর্বোচ্চ উচ্চতা নির্ণয় কর।

000

৪৮। শক্তির নিত্যতার নীতি ব্যবহার করে সরল ছন্দিত গতির কোনো কণার বেগের রাশিমালা প্রতিপাদন কর।

৪৯। ক্ষমতা কাকে বলে ? [ব. বো. ২০১৬]

৫০। ক্ষমতার মান নির্ণয় কর।

৫১। ক্ষমতার এককের সংজ্ঞা দাও।

৫২। কোনো একটি যন্ত্রের ক্ষমতা 50 MW—ব্যাখ্যা কর। [অভিন্ন প্রশ্ন (ক সেট) ২০১৮]

৫৩। অশ্বক্ষমতা কাকে বলে ? [চ. বো. ২০১৭; দি. বো. ২০১৭ ; অভিনু প্রশ্ন (খ সেট) ২০১৮; রা. বো. ২০১৯]

৫৪। অশ্ব ক্ষমতার সাথে ওয়াটের সম্পর্ক কী ?

৫৫। কাজ ও ক্ষমতার পার্থক্য নির্দেশ কর।

৫৬। ^শ শক্তি ও ক্ষমতার পার্থক্য নির্দেশ কর।

৫৭। যন্ত্রের কর্মদক্ষতা বলতে কী বোঝায় ? [ঢা. বো. ২০১৫; সি. বো. ২০১৫, ২০১৬; সি. বো. ২০১৯]

৫৮। একটি ইঞ্জিনের দক্ষতা 60% বলতে <mark>কী বোঝায় ? [ব. বো. ২০১৬]</mark>

৫৯। টর্ক ও কাজের মান এবং একক <mark>সমান হলেও ভিন্ন</mark> রাশি—ব্যাখ্যা <mark>কর।[ঢা. বো</mark>. ২০১৯]

<mark>যি-বিভাগ :</mark>) গাণিতিক সমস্যা

সেট I

[সাধারণ সমস্যাবলি]

১। অনুভূমিকের সাথে 60° কোণে 5 m লম্বা একটি হেলানো তলের পাদদেশ থেকে শীর্ষদেশে 10 kg ভরের একটি রক তুলতে হবে। তলকে ঘর্ষণহীন ধরে ব্লকটিকে ধ্রুব গতিতে তুলতে কত কাজ করতে হবে নির্ণয় কর।

[땅: 424.35 J]

- ২। একটি কণার উপর $\overrightarrow{F} = (6\hat{1} 3\hat{j} + 2\hat{k})$ N বল প্রয়োগ করলে কণাটির $\overrightarrow{r} = (2\hat{1} + 2\hat{j} \hat{k})$ m সরণ হয়। বল কর্তৃক সম্পাদিত কাজের পরিমাণ নির্ণয় কর।
- ৩। একটি পাম্প দ্বারা 600 লিটার জ্বালানি তেলকে 20 m উপরে অবস্থিত একটি ট্যাঙ্কে ওঠাতে অভিকর্ষের বিরুদ্ধে কত কাজ করতে হবে ? এক ঘন সেমি জ্বালানি তেলের ভর 0.82 g। এক লিটার = 1000 cm³। [উ: 9.64×10⁴ J]
- 8 । একটি বাক্সকে 50 N বল দ্বারা একটি অমসৃণ মেঝের উপর দিয়ে টানা হচ্ছে। অনুভূমিকের সাথে বলটি 37° কোণ করে ক্রিয়া করে। 10 N এর একটি ঘর্ষণ বল গতিকে বাধা দেয়। বাক্সটি ডানদিকে 3 m সরে গেল। (ক) 50 N বল দ্বারা কৃত কাজ হিসাব কর। (খ) ঘর্ষণ বল দ্বারা কৃত কাজ হিসাব কর। (গ) বাক্সের উপরে ক্রিয়াশীল সকল বল দ্বারা কৃত নিট কাজ নির্ণয় কর।

 ছি: (ক) 119.8 J (খ) – 30 J (গ) 89.8 J
- ৫। একটি রাইফেলের গুলি একটি তক্তাকে ঠিক ভেদ করতে পারে। যদি গুলির বেগ চারগুণ করা হয়, তবে অনুরূপ কয়টি তক্তা ভেদ করতে পারবে ?
- ৬। একটি রাইফেলের গুলি একটি তক্তাকে ঠিক ভেদ করতে পারে, যদি গুলির বেগ তিনগুণ করা হয়, তবে এরপ কয়টি তক্তা ভেদ করতে পারবে ?
- ৭। 2 kg ভরের কোনো বস্তু 36 km h^{-1} বেগে চলতে থাকলে এর গতিশক্তি কত হবে বের কর। [উ: 100 J]
- ৮। স্থিরাবস্থা থেকে 50 kg ভরবিশিষ্ট কোনো বস্তু একটি নির্দিষ্ট বলের ক্রিয়ার ফলে 2 s বাদে 12 m s⁻¹ বেগ অর্জন করে। এর উপর কী পরিমাণ বল কাজ করছে এবং 5 s বাদে এর গতিশক্তি কত হবে ?

[당: 300 N; 2.25 × 10⁴ J]

৯। 6 kg ভরবিশিষ্ট একটি বস্থু স্থির অবস্থায় ছিল। 30 N বল প্রয়োগ করায় 10 s পর বস্তুটির গতিশক্তি কত হবে १ [译: 7500 J] ১০। 50 kg ভরের একটি বোমা ভূ-পৃষ্ঠ থেকে 1 km উঁচুতে অবস্থিত একটি বিমান থেকে ফেলে দেওয়া হলো। (i) 10 s পরে এবং (ii) ভূমি স্পর্শ করার পূর্বমুহূর্তে এর গতিশক্তি কত ? [$\textcircled{v}: 2.4 \times 10^5 \text{ J}; 4.9 \times 10^5 \text{ J}]$ ১১। 200 g ভরের একটি বস্থু 10 m উপর থেকে নিচে পড়ে যায়। ভূ-পৃষ্ঠকে স্পর্শ করার পূর্ব মুহূর্তে এর গতিশক্তি কত ? [उ: 19.6 J] ১২। 500 g ভরবিশিষ্ট কোনো বস্থু একটি জাহাজের উপর হতে 10 m নিচে পানিতে পড়ল : (i) বস্থুটির প্রাথমিক বিভব শক্তি, (ii) বস্তুটির সর্বোচ্চ গতিশক্তি, (iii) বস্তুটি যে বেগ নিয়ে পানিতল স্পর্শ করে তা নির্ণয় কর। [话: (i) 49 J, (ii) 49 J; (iii) 14 m s⁻¹] 200 g ভরের একটি বস্তু কত উপর থেকে নিচে পড়লে ভূমি স্পর্শ করার মুহূর্তে এর গতিশক্তি 19.6 J হবে ? 106 উ: 10 m] 2 × 10³ kg ভরের একটি পিকআপ ট্রাক 90 km h⁻¹ বেগে চলছে। একই গতিশক্তি সম্পন্ন হতে হলে 10³ kg 281 ভরের একটি গাড়িকে কত বেগে চলতে হবে ? [한: 127.28 km h⁻¹ বা 35.36 m s⁻¹] সমতল রাস্তায় চলন্ত 1600 kg ভরে<mark>র একটি</mark> গাড়িকে যখন ব্রেক <mark>কষে থামিয়ে দে</mark>য়া হয় তখন 500 kJ তাপ 196 উৎপন্ন হয়। ব্রেক প্রয়োগের পূর্ব মুহু<mark>র্তে ণাড়িটি</mark>র বেণ কত ছিল १ [⁵: 25 m s⁻¹] একটি বালক শিশুদের ট্রাই সা<mark>ইকেলে</mark> বসা তার ছোট ভাইকে 80 N সমবলে ঠে<mark>লছে। ছো</mark>ট ভাইকে 400 J গতি 331 শক্তি প্রদান করতে হলে তাক<mark>ে কত</mark> দূরত্বে ঠেলতে হবে <u>१</u> উ: 5 m] 40 kg ভর সম্পন্ন কোনো বালিকা মাটি থেকে 15 cm উঁচু থেকে লাফিয়ে 60 বার স্কি<mark>পিং</mark> করল। তার কঁত শক্তি 291 ব্যয় হলো ? [^じ: 3528 J] একটি রাইফেলের গুলি নির্দি<mark>ষ্ট পুরু</mark>ত্ত্বের একটি তক্তা ভেদ করতে পারে। ঐরূপ 16 ট<mark>ি তক্তা</mark> ভেদ করতে হলে এর 301 বেগ কতগুণ হতে হবে ? টি: 4 গুণ] h মিটার উঁচু স্থান থেকে একটি <mark>বস্তু পড়ে</mark> গেল। কোথায় এর গতিশক্তি বিভব শক্তির <mark>অর্ধেক</mark> হবে १ 166 উি: ভূম<mark>ি থেকে আ</mark>দি উচ্চতার দুই-তৃতীয়াংশ উচ্চতায<mark>় গতিশক্তি</mark> বিভব শক্তির অর্ধেক হবে।] একটি বস্তুকে 30 m উচ্চতা থেকে ফে<mark>লে দেওয়া হ</mark>লো। ভূমি হতে ক<mark>ত উচ্চতায় গতি</mark>শক্তি বিভব শক্তির দ্বিগুণ হলে 201 কত উচ্চতা থেকে বস্তুটি ফেলা হয়েছিল ? 📴: 30 m] ঢাি. বি. ২০১৬-২০১৭; বুটেক্স ২০১৬-২০১৭; চুয়েট ২০০৩-২০০৪; খু. বি. ২০১৫-২০১৬; ই. বি. ২০১৬-২০১৭] 250 kg ভরের একটি বোঝা একটি ক্রেনের সাহায্যে 0.1 m s⁻¹ ধ্রুব বেগে ওঠানো হলো। ক্রেনের কত ক্ষমতা 231 ব্যয় হয় ? [당: 245 W] 1000 kg ভরের একটি লিফট সর্বোচ্চ 800 kg ওজন বহন করতে পারে। 4000 N মানের একটি ধ্রুব ঘর্ষণ বল 221 এর ঊর্ধ্বমুখী গতি ব্যাহত করে। লিফটিকে 3 m s⁻¹ সমদ্রুতিতে উপরের দিকে ওঠাতে হলে মোটরের সর্বনিম্ন কত ক্ষমতা সরবরাহ করতে হবে ? ডि: 64.92 kW1 ভূমি থেকে 20 m উঁচু ছাদে ইট তোলার জন্য 10 kW এর একটি ইঞ্জিন ব্যবহার করা হলো। 1 ঘণ্টায় ইঞ্জিনটি কী 201 পরিমাণ ইট ছাদে তুলতে পারে ? [당: 1.84 × 10⁵ kg] একটি পাম্প 4.9 মিনিটে কুয়া থেকে 10,000 লিটার পানি 6 m গড় উচ্চতায় তুলতে পারে। পাম্পের ক্ষমতার 281 80% কার্যকর হলে এর ক্ষমতা নির্ণয় কর। [译: 2.5 kW]

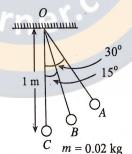
২৫। 100 m গভীর একটি কুয়া থেকে ইঞ্জিনের সাহায্যে প্রতি মিনিটে 1000 kg পানি ওঠানো হয়। যদি ইঞ্জিনের ক্ষমতা 42% নষ্ট হয়, তাহলে এর অশ্বক্ষমতা নির্ণয় কর। [উ: 37.75 hp] [সি. বো. ২০০৬; কু. বো. ২০০১]

- ২৬। একটি পাম্প ঘণ্টায় 25 × 10° kg পানি 50 m উঁচুতে তুলতে পারে। পাম্পের ক্ষমতার 70% কার্যকর হলে প্রকৃত ক্ষমতা কত ? [উ: 4.86 × 10° W]
- ২৭। একটি পানিপূর্ণ কুয়ার গভীরতা 10 m এবং ব্যাস 6 m। একটি পাম্প 20 মিনিটে কুয়াটিকে পানিশূন্য করতে পারে। পাম্পটির অশ্বক্ষমতা কত ? [উ: 15.47 hp] [ব. বো. ২০১৫]
- ২৮। একটি বিজ্ঞাপনে দাবি করা হলো যে, একটি 1200 kg ভরের গাড়ি স্থির অবস্থা থেকে 8 s-এ 25 m s⁻¹ বেগ অর্জন করতে পারে। এই ত্বরণ প্রদানের জন্য গাড়িটির ইঞ্জিনকে গড়ে কত ক্ষমতা প্রয়োগ করতে হবে १ ঘর্ষণজনিত ক্ষয় উপেক্ষা কর। [উ: 46875 W]

সেট II

[সাম্প্রতিক বোর্ড পরীক্ষা ও বিভিন্ন বিশ্ববিদ্যালয়ের ভর্তি পরীক্ষায় সন্নিবেশিত সমস্যাবলি]

২৯। একটি 300 g ভরের বস্তু অনুভূমিকের সাথে 30° কোণে রক্ষিত তলে 5.88 J গতিশক্তি প্রয়োগে A থেকে E বিন্দুতে ঘর্ষণহীনভাবে ঠিক পৌছে যায়। পরক্ষণে বস্তুটি E থেকে উক্ত তল বরাবর A-এর দিকে পড়তে থাকে চিত্রে AB = AC = CD = DE


(ক) আনত তল <u>AE এর দৈ</u>র্ঘ্য নির্ণয় কর।

(খ) বস্তুটি উল্লিখিত <mark>তল ব</mark>রাবর পড়ার সময় যান্ত্রিক শক্তির সরক্ষণ সূত্র মেনে চলে — তার যথার্থতা D ও C বিন্দুতে গাণিতিক বিশ্লেষণের মাধ্যমে মল্যায়ন কর।

[উ: 4 m ; (খ) C এ<mark>বং D</mark> বিন্দুতে মোট শক্তি হিসাব করে দেখাতে হবে এই <mark>দুই</mark> বিন্দুতে মোট শক্তি একই থাকছে অর্থাৎ 5.88 J। সুতরা<mark>ং বস্তু</mark>টি উদ্দীপকে উল্লেখিত তল বরাবর পড়ার সময় শক্তির সংরক্ষণ সূত্র মেনে চলে।]

[কু. বো. ২০১৫]

উপরের উদ্দীপকে 0.02 kg ভরের একটি বস্তুকে O বিন্দু থেকে 1 m লম্বা সুতার সাহায্যে ঝুলানো হলোঁ। A বিন্দু সর্বোচ্চ বিস্তার নির্দেশ করে যা O বিন্দুতে 30° কোণ উৎপন্ন করে, এটিকে A বিন্দু পর্যন্ত টেনে ছেড়ে দেয়া হলে এটি দুলতে শুরু করে। $[g = 9.8 \text{ m s}^{-2}]$

(ক) উদ্দীপকের *B* বিন্দুতে দোলকটির গতিশক্তি বের কর।

(খ) উদ্দীপকে ব্যবহৃত দোলকটি যান্ত্রিক শক্তির নিত্যতা সূত্র মেনে চলে কিনা—গাণিতিক বিশ্লেষণপূর্বক মতামত দাও।

[উ: (ক) 0.0196 J; (খ) A, B ও C প্রতিটি বিন্দুতে মোট যান্ত্রিক শক্তি একই অর্থাৎ 0.0261 J। সুতরাং উদ্দীপকে ব্যবহৃত দোলকটি যান্ত্রিক শক্তির নিত্যতা সূত্র মেনে চলে।] [রা. বো. ২০১৫]

৩১। চিত্রে প্রদর্শিত AB মই বেয়ে 30 kg ভরের একটি বালক উপরে উঠে এবং CD আনত তল বেয়ে নিচে নেমে আসে। তলের ঘর্ষণ বল 50 N।

নিচের প্রশ্নগুলোর উত্তর দাও :

(ক) বালকটি A হতে C বিন্দুতে পৌঁছতে অভিকর্ষ বল দ্বারা কৃতকাজ হিসাব কর।

(খ) CD পথে নামার সময় বালকটির তুরণ অভিকর্ষজ তুরণের চেয়ে কম না বেশি হবে ? গাণিতিক বিশ্লেষণ কর।

উ: (ক) –1018.4 J; (খ) বালকটির ত্বরণ 5.12 m s⁻² অর্থাৎ অভিকর্ষজ ত্বরণের চেয়ে কম হবে।] [চ. বো. ২০১৫]

৩২। 250 kg ভরের একটি গাড়ি উন্নাঞ্জির <mark>সাথে 66.42°</mark> কোণে আনত একটি রাস্তা ধরে 12.393 m s⁻¹ বেগে নিচে নামার সময় গাড়ির চালক ব্রেক কর<mark>ার 30 m দূরত্ব অতিক্রম করার পর থেমে গেল</mark>।

(ক) গাড়িটি থামাতে বাধাদানকা<u>রী বলের</u> মান নির্ণয় কর।

(খ) উদ্দীপকে সংরক্ষণশীলতা<mark>র নীর্</mark>ডি রক্ষিত হবে কী ? গাণিতিক যুক্তিসহ বিশ্লেষণ ক<mark>র।</mark>

[উ: (ক) 1620 N; (খ) আনত তলের শীর্ষ বিন্দুতে মোটশক্তি এবং নিম্নতম বিন্দুতে মোট শক্তি একই অর্থাৎ <mark>4.86</mark> × 10⁴ J। সুতরাং উদ্দীপকে সংরক্ষণশীলতার নীতি <mark>রক্ষিত</mark> হবে।] [য. বো. ২০১৬]

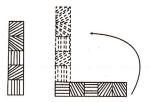
৩৩। 80 kg ভরের একজন লো<mark>ক 20</mark> kg ভরের একটি বোঝা মাথায় নিয়ে 40 m দৈর্ঘ্যের মই বেয়ে একটি দালানের ছাদে উঠলো। মইটি অনুভূমি<mark>কের</mark> সাথে 40°কোণ উৎপন্ন করে দালানের ছাদে লাগানো <mark>ছিল</mark>।

(ক) লোকটি কর্তৃক কৃতকা<mark>জ বের</mark> কর।

(খ) মইটির দৈর্ঘ্য 60 m হল<mark>ে অনুভূ</mark>মিকের সাথে কত কোণে স্থাপন করলে এক<mark>ই পরিমা</mark>ণ কাজ সম্পাদিত হবে এবং এ ক্ষেত্রে কোনো সুবিধা পাওয়া য<mark>াবে কিনা</mark>—গাণিতিকভাবে মতামত দাও।

টি: (ক) $2.25 \times 10^4 \, \mathrm{J}$; (খ) অনুভূমিকের সাথে 25.4° কোণ করে মইটি স্থাপন করলে একই পরিমাণ কাজ পাওয<mark>়া যাবে। যেহেতু অনুভূমিকের সা</mark>থে উৎপন্ন কোণ উদ্ধীপকে উল্লেখিত কোণের চেয়ে কম সুতরাং এক্ষেত্রে কম বল প্রয়োগে কাজ সম্পন্ন করা যাবে অর্থাৎ এক্ষেত্রে সুবিধা পাওয়া যাবে। [রা. বো. ২০১৭]

৩৪। একটি পানিপূর্ণ কুয়ার গভীরতা 20 m ও ব্যাস 2 m কুয়াটিকে পানিশূন্য করার জন্য 5 hp এর একটি পাম্প লাগানো হলো। অর্ধেক পানি তোলার পর পাম্পটি নষ্ট হয়ে গেল। বাকি পানি তোলার জন্য একই ক্ষমতাসম্পন্ন আর একটি পাম্প লাগানো হলো।

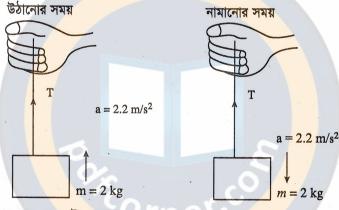

(ক) প্রথম পাম্প দ্বারা সম্পাদিত কাজের পরিমাণ নির্ণয় কর।

(খ) প্রথম ও দ্বিতীয় পাম্প দ্বারা পানি তুলতে একই সময় লাগবে কিনা গাণিতিক বিশ্লেষণের মাধ্যমে দেখাও।

[চ. বো. ২০১৭]

উ: $1.54 \times 10^6 \, \mathrm{J}$; (খ) প্রথম পাম্পের সাহায্যে পানি তুলতে সময় লাগবে 412.6 s এবং দ্বিতীয় পাম্পের সাহায্যে পানি তুলতে সময় লাগবে 1238.11 s । অর্থাৎ পাম্প দুটি দ্বারা পানি তুলতে একই সময় লাগবে না ।]

৩৫। 50 cm বাহুবিশিষ্ট কোনো ঘনকের ভর 25 kg। এরূপ পাঁচটি ঘনককে একটির উপর আরেকটি রেখে একটি স্তম্ভ তৈরি করা হলো। অন্যটিকে অনুরূপ আরো পাঁচটি ব্লককে ভূমিতে পাশাপাশি সংযুক্ত করে স্তম্ভটিকে খাড়া করা হলো।



(ক) স্তম্ভের চূড়া হতে একটি পাথর টুকরা পড়ে গেলে কত বেগে ভূমিতে আঘাত করবে ?

(খ) স্তম্ভ তৈরির কোন উপায়টি অধিক গ্রহণযোগ্য, গাণিতক বিশ্লেষণের মাধ্যমে ব্যাখ্যা কর।

[উ: (ক) 7 m s⁻¹; (খ) উভয় ক্ষেত্রে স্তম্ভ তৈরি করতে একই পরিমাণ অর্থাৎ 1225 J কাজ সম্পন্ন হয় কিন্তু প্রথম ক্ষেত্রে পর্যায়ক্রমে শক্তি প্রয়োগ করতে হয়, পক্ষান্তরে দ্বিতীয় ক্ষেত্রে শক্তি প্রয়োগ করতে হয় একবারে তাই স্তম্ভ তৈরিতে প্রথম উপায়টি অধিক গ্রহণযোগ্য।] [দি. বো. ২০১৭]

৩৬। একটি সুতার সাহায্যে 2 kg ভরের একটি বস্তুকে ঝুলিয়ে বস্তুটিকে 2.2 m/s² সমত্বরণে 5 m উপরে উঠানো হলো এবং পরবর্তীতে নিচে নামানো হলো।

(ক) উপরে উঠানোর সময় সূতা<mark>র টান কত</mark>?

(খ) বস্তুটিকে উঠাতে বা নামাতে সূতার টান কর্তৃক বস্তুটির উপর কৃত কাজ কোন ক্ষেত্রে বেশি হবে? গাণিতিক বিশ্লেষণের মাধ্যমে মতামত দাও।

[উ: (ক) 24 N; (খ) উপরে উঠানের সময় কৃত কাজ = 120 J এবং নিচে নামানোর সময় কৃত কাজ = 76 J। অর্থাৎ উপরে উঠানোর সময় কৃত কাজ বেশি হবে। [অভিনু প্রশ্ন (খ সেট) ২০১৮]

- ৩৭। 3 kg ভরের বস্তুর উপর একটি বল ক্রিয়াশীল আছে। বস্তুটির অবস্থান সমীকরণ $x = 3t 4t^2 + t^3$ যেখানে x এর মান মিটারে t এর মান সেকেন্ডে। t = 0 হতে t = 4 সময়ে বলটি দিয়ে বস্তুর উপর কৃত কাজের পরিমাণ নির্ণয় কর। [উ: 528 J] [ব্রয়েট ২০১৬-২০১৭]
- ৩৮। 2 mm ব্যাসার্ধের একটি বৃষ্টির ফোঁটা 250 m উচ্চতা থেকে বলটির উপর পড়ছে। বৃষ্টির ফোঁটার উপর অভিকর্ষীয় বল কতটা কাজ করবে ? [উ: 0.082 J] [বুয়েট ২০১৭-২০১৮]
- ৩৯। একটি জলবিদ্যুৎ কেন্দ্রের বাধের উচ্চতা 10 m। 1 MW বিদ্যুৎ উৎপাদনের জন্য প্রতি সেকেন্ডে টারবাইনটির রেডগুলোর উপর কত কিলোগ্রাম পানি পড়তে হবে ? [উ: 10240.08 kg] [বুয়েট ২০১০-২০১১]

কাজ, শক্তি ও ক্ষমতা

8১। 40 km h⁻¹ বেগে চলন্ত একটি গাড়ির গতিশক্তি 2 × 10⁵ J। গাড়িটি 20 km h⁻¹ বেগে চললে তার গতিশক্তি কত J হবে ? [উ: 0.5 × 10⁵ J] [শা. বি. প্র. বি. ২০১৬-২০১৭]

৪২। একটি মোটরের ক্ষমতা 160 W। মিনিটে এর দ্বারা কৃত কাজ কত ? [উ: 960 J] হো. দা. বি. ২০১৬-২০১৭]

৪৩। একটি পানিপূর্ণ কৃয়ার দৈর্ঘ্য 5 m, প্রস্থ 3 m, গভীরতা 10 m। 80% কর্মদক্ষতা বিশিষ্ট একটি পাম্প 20 মিনিটে কুয়াটিকে পানিশূন্য করতে পারে। পাম্পটির অশ্বক্ষমতা কত ? [উ: 10.26 hp] [কুয়েট ২০১৫-২০১৬]

88। 100 kg ভরের একজন লোক প্রতিটি 25 cm উঁচু 20 টি সিঁড়ি 10 s-এ উঠতে পারেন। তাঁর ক্ষমতা কত ওয়াট (W) ?

৪৫। একটি অর্ধপূর্ণ কুয়ার গভীরতা 12 m এবং ব্যাস 1.8 m। কোনো ইঞ্জিন 24 মিনিটে কুয়াটির পানি সম্পূর্ণ খালি করতে পারলে তার অশ্বক্ষমতা কত ? [উ: 1.25 kW বা 1.68 hp বা,1.68 hp] [য. বি. প্র. বি. ২০১৬-২০১৭]

৪৬। একটি জলপ্রপাত 900 m উঁচু। যদি ধরা হয় পতিত পানির গতিশক্তির অর্ধেক তাপে পরিণত হয়, তাহলে তাপমাত্রা বন্ধি কত হবে ?

৪৭। 20000 kg ভরের একটি গাড়ির ইঞ্জিনের ক্ষমতা 560 hp। কর্মদক্ষতা <mark>80%।</mark> গাড়িটিকে স্থির অবস্থা থেকে 25 m s⁻¹ বেগে আনতে ন্যূনতম ক<mark>ত সময়</mark> লাগবে ? [1hp = 0.746 kW] [উ<mark>: 18</mark>.7 s] [খু. বি. ২০১৬-২০১৭]

8৮। 1200 kg ভরের একটি গাড়ির ইঞ্জিনের ক্ষমতা 134.65 hp ও কর্মক্ষমতা 90%। গাড়িটিকে স্থিরাবস্থা থেকে 30 m s^{-1} বেগে আনতে ন্যূনতম কত সময় লাগবে ? [1 hp = 0.746 kW] [উ: 6 s] [বুয়েট ২০১০-২০১১]

৪৯। 30 kg ভরের একটি বস্তু 21.8 m উচ্চতা হতে ভূমিতে পতিত হয়ে কাদার মধ্যে প্র<mark>বেশ</mark> করল। কাদার প্রতিরোধ বল ধ্রুবক 1030 কিলোগ্রাম ওজন হলে, বস্তুটি কাদার মধ্যে কত দূর প্রবিষ্ট হবে ? [উ: 0.654 m]

[বুয়েট ২০০৯-২০১০]

৫০। 4 g ভরের একটি বস্তু 6 m <mark>উঁচু স্</mark>থান হতে পতিত হয়ে কাদায় 5 cm প্রবেশ করে <mark>স্থির হ</mark>য়ে পড়ল। বস্তুটির উপর কাদায় গড় ধাক্কার পরিমাণ নির্ণয় কর। [উ : 4.7432 N] [বুয়েট ২০১০-২০১১]

৫১। অনুভূমিক কাঠের উপর একটি পে<mark>রেক উল্লম্ব</mark>ভাবে রাখা আছে। 1 kg ভরের <mark>হাতুড়ি</mark> দ্বারা 1 m s⁻¹ বেগে পেরেকের উপর আঘাত করায় এটি 0.015 m কাঠে<mark>র মধ্যে ঢুকে</mark> গেলে গড় বাধাদানকারী বল কত ?

[উ: 43.13 N] [কুয়েট ২০০৫-২০০৬]

৫২। 4 kg ভরের একটি বস্তু 5 m উঁচু থেকে একটি পেরেকের উপর পড়লে পেরেকটি মাটির মধ্যে 10 cm ঢুকে গেল। মাটির গড় প্রতিরোধ বল নির্ণয় কর। [উ: 1999 N] [চ. বো. ২০১৯]

৫৩। কোনো গাছের ডালে একটা আম ঝুলছিল। একজন লোক আমটির দিকে খাড়া উপরের দিকে একটি পাথর ছুঁড়লেন। আমটিতে আঘাত করার সময় পাথরটির বেগ 9.8 m s⁻¹। যদি ঐ লোক আগের তুলনায় অর্ধেক শক্তি ব্যয় করেন তবে পাথরটি কেবল আমের উচ্চতায় পৌঁছুতে পারে। আমের উচ্চতা কত ? [উ : 4.9 m]

৫৪। একটি রাইফেলের গুলি প্রতিটি 5 cm পুরুত্বের দুটি কাঠের তক্তাকে ভেদ করতে পারে এবং পৃথকভাবে কোনো একটি দেয়ালের মধ্যে 20 cm ভেদ করতে পারে। গুলিটি দেয়ালের মধ্যে কতটুকু ভেদ করতে পারবে যদি উল্লিখিত তক্তার একটি তক্তা দেয়ালের সাথে সংযুক্ত করা থাকে ? [উ : 10 cm] [বুয়েট ২০১১-২০১২]

৫৫। একটি বানর 20 m উঁচু নারকেল গাছ থেকে নারকেল ফেলছে। প্রত্যেকটি নারকেলের ভর 2 kg এবং বানর প্রতি সেকেন্ডে 2টি করে ফেলছে। নারকেলের সমস্ত বিভবশক্তি বিদ্যুৎশক্তিতে রূপান্তরিত হলে উক্ত বিদ্যুৎ শক্তির সাহায্যে কতটি 60 ওয়াটের বৈদ্যুতিক বাতি জ্বালানো যাবে ? [উ : 13 টি] [বুয়েট ২০০৯-২০১০]

পদার্থ-১ম (হাসান) -২৫(ক)

[당: 7.96 N m]

পদার্থ-১ম (হাসান) -২৫(খ)

2π কোণে ঘুরাতে কৃতকাজের পরিমাণ 50 J হলে টর্কের মান কত ?

[বে. রো. বি. ২০১৬-২০১৭] 80 m উচ্চতা থেকে যদি একটি বল মেঝেতে পড়ে এবং বলটির 20% শক্তি মেঝের সাথে প্রতিঘাতে হ্রাস পায়. 691 তবে বলটি মেঝেতে বাড়ি খেয়ে কত উচ্চতায় উঠবে ? [উ: 64 m] [য.বি.প্র.বি ২০১৬-২০১৭] ৫৮। 270 kg ভরের একটি বোমা একটি ক্রেনের সাহায্যে 0.1 m s ⁻¹ দ্রুত বেগে উঠানো হলো। ক্রেনের কত ক্ষমতা ব্যয় হয় ? [উ: 264.6 W] [জা. বি. ২০১৬-২০১৭] ৫৯। একটি পাম্প মিনিটে 1200 gallon পরিমাণ পানি 6 ft উঁচুতে 32 ft s⁻¹ (9.8 m s⁻¹) গতিবেগে নিক্ষেপ করতে পারে। 1 gallon পানির ভর 10 lb হলে ইঞ্জিনের অশ্বক্ষমতা নির্ণয় কর। [উ: 8 hp] [রুয়েট ২০১৬-২০১৭, ২০০৫-২০০৬] 70 kg ভরের এক ব্যক্তি 20 kg ভরের এক বোঝা নিয়ে 6 m দীর্ঘ একটি সিঁড়ি বেয়ে উপরে উঠলো। সিঁড়িটি 501 অনুভূমিক তলের সাথে 30° কো<mark>ণ করে থাক</mark>লে ঐ ব্যক্তি কত কাজ ক<mark>রলো নি</mark>র্ণয় কর। উ: 2646 J] [বুয়েট ১৯৯৬-১৯৯৭; রুয়েট ২০০৪-২০০৫] $25~{
m g}$ ভরের একটি গুলি $0.5~{
m km~s^{-1}}$ বেগে ঢুকে $100~{
m m~s^{-1}}$ বেগে বে<mark>র হয়ে</mark> গেল। লক্ষ্যবস্তুর ভিতর দিয়ে 531 চলতে গুলিটির কত শক্তি ব্যয় হবে ? [উ: 3000 J] [চুয়েট ২০১৩-২০১৪] 10 m উপর থেকে 10 kg ভরের একটি মুক্তভাবে পড়ন্ত বস্তুর মাটি থেকে 5 m উপরে মোট শক্তি কত হবে ? 521 [উ: 980 J] [বুয়েট ২০১০-২০১১] ৬৩। ভূমি থেকে 3.0 m উচ্চ<mark>তাবি</mark>শিষ্ট একটি স্থান থেকে 2.0 kg ভরবিশিষ্ট এক<mark>টি কাঠে</mark>র টুকরা ঢালু পথ বেয়ে 50 J শক্তি নিয়ে মাটিতে পড়ছে। বেয়ে পড়ার জন্য ঘর্ষণ কর্তৃক কাঠের টুকরাটির <mark>উপর কা</mark>জের পরিমাণ কত হবে १ 🖲 : 8.8 J] ব্রিয়েট ২০০৯-২০১০] ৬৪। পৃথিবীপৃষ্ঠ হতে 5 kg উপরে কিছু মেঘ আছে। ঐ মেঘ বৃষ্টিরূপে নেমে এসে ভূপৃষ্ঠে 100 km² স্থানে 1 mm পানি সৃষ্টি করতে পারে। উক্ত পানিকে আবার মেঘে পরিণত করতে কত কাজের প্রয়োজন ? [**⑤**: 49×10¹¹ J] [কুয়েট ২০১৫-২০১৬] ৬৫। কোনো কুয়া থেকে 20 m উপরে পানি তোলার জন্য 60 kW-এর একটি পাম্প ব্যবহার করা হচ্ছে। পাম্পের দক্ষতা 82.2% হলে প্রতি মিনিটে কত লিটার পানি তোলা যাবে ? [উ : 15098 লিটার] [রুয়েট ২০০৮-২০০৯] ৬৬। 100 m উচ্চতা থেকে 5 kg ভর মুক্তভাবে অভিকর্ষের টানে পড়তে থাকলে. 4 s পরে ভরটির গতিশক্তি ও বিভবশক্তি কত হবে ? উ : 1058.4 J; 3841.61 J] [বুয়েট ২০১০-২০১১] ৬৭। একটি ইঞ্জিন 200 m গভীর ব্রুয়া হতে প্রতি মিনিটে 500 kg পানি উত্তোলন করে। যদি 20% ক্ষমতার অপচয় হয় তাহলে ইঞ্জিনের প্রকৃত ক্ষমতা কত ? [উ: 20416.7 W] [বুয়েট ২০১৩-২০১৪] ৬৮। ভূ-পৃষ্ঠের 20 m নিচ হতে পাম্পের সাহায্যে প্রতি মিনিটে 600 kg পানি উঠানো হয়। যদি পানি বাইরে আসার বেগ 5 m s⁻¹ হয়, তবে পাম্পের ক্ষমতা কত ? [উ: 2.085 kW] [কুয়েট ২০১২-২০১৩]

063